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with X2 (H;) submflds of dim 2n - 3.
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Everything has nat’l orientations, so
define hZ (M) to be the algebraic
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manifolds are all noncpt. But Xg'm(M)
is cpt when 68 ¢ Dy and M small.
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Moral: in resolved picture h(M) is the alg n# of red and blue for all angles.
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