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Much learned about 3-manifolds by
studying reps π1M3 →G for G one of:

Hyperbolic geometry [Thurston, ...]

SL2C=
{(

a b
c d

) ∣∣∣∣ a,b,c,d ∈C, det=1

}

≈ Isom+(H3)

Gauge Theory [Casson, Floer, ...]

SU2 =
{(

a b

−b a

) ∣∣∣∣ |a|2 +|b|2 =1

}

≈ Isom+(S2)= SO3.

Left-Orderability

SL2R

≈ Isom+(H2).

SU2 and SL2R are the real forms of SL2
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) ∣∣∣∣ |a|2 +|b|2 =1

}

≈ Isom+(S2)= SO3.

Left-Orderability

SL2R ≈ Isom+(H2).

SU2 and SL2R are the real forms of SL2

Setting: K a knot in S3, M=S3 \ν(K),
µ ∈π1(M) a meridian, G= SU2 or SL2R.

K M

Set Aθ =
(
cosθ −sinθ
sinθ cosθ

) ∈G for θ ∈ (0,π)

which rotates by 2θ, conj to
(
eiθ 0
0 e−iθ

)
in

SL2C. Have SU2∩SL2R= {Aθ} =S1.
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Set Aθ =
(
cosθ −sinθ
sinθ cosθ

) ∈G for θ ∈ (0,π)

which rotates by 2θ, conj to
(
eiθ 0
0 e−iθ

)
in

SL2C. Have SU2∩SL2R= {Aθ} =S1.

Let XθG(M) be

{
ρ : π1M→G

∣∣ ρ(µ) conj to Aθ
}

“modulo conjugation by G”. Set

DM =
{
θ ∈ (0,π)

∣∣∣ ∆M(e2iθ)=0
}

A rep ρ : π1(M)→ SL2C is reducible
when it preserves a line in C2. The
subset of irred reps is Xθ,irr

G (M).
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A rep ρ : π1(M)→ SL2C is reducible
when it preserves a line in C2. The
subset of irred reps is Xθ,irr

G (M).

[Lin, Herald, Heusner-Kroll ’90s]
For θ ∉DM, can define

hθSU2
(M)= signed count of Xθ,irr

SU2
(M)

Moreover, hθSU2
(M)=−1

2σK(e
i2θ),

which is constant outside of DM.

[D-Rasmussen] Suppose M is small,
i.e. has no closed essential surface.
Then for θ ∉DM, can define

hθSL2R
(M)= signed count of Xθ,irr

SL2R
(M)

Moreover, there exists h(M) ∈Z with

h(M)=hθSU2
(M)+hθSL2R

(M)

for all θ ∉DM.
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SL2R
(M)

Moreover, there exists h(M) ∈Z with

h(M)=hθSU2
(M)+hθSL2R

(M)

for all θ ∉DM.

Cor. If M is small with σK non-
constant, then there is an irred
ρ : π1M→ SL2R.

Pf. As σK is nonconst., so is hθSU2
(M)

=⇒ hθSL2R
(M) nonconstant

=⇒ some θ0 with hθ0
SL2R

(M) ̸=0

=⇒ Xθ0,irr
SL2R

(M) is nonempty.

Compare:

[Kronheimer-Mrowka] A nontrivial
K has an irred ρ : π1M→ SU2.
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Motivation: L-space conjecture,
orderability of 3-manifold groups,
translation extension locus [Culler-D].

Let Σn(K) be the n-fold cyclic cover of
S3 branched over K.

Cor. If K is a small knot with non-
constant σK then π1

(
Σn(K)

)
is

left-orderable for all n≥π/wK , where
wK depends on DM.

Cor. If K is 2-bridge with σK(−1) ̸=0,

then either π1

(
M(α)

)
is left-orderable

for all α ∈ (−∞,1) or for all α ∈ (−1,∞).
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Casson-Lin signs. Write M=H1∪SH2

using an n-bridge diagram for K:

S

H2

H1

S is a 2-sphere minus 2n disks
Hi are genus-n handlebodies
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Casson-Lin signs. Write M=H1∪SH2

using an n-bridge diagram for K:

S

H2

H1

S is a 2-sphere minus 2n disks
Hi are genus-n handlebodies

π1H2

π1M π1S

π1H1

Xθ,irr
G (H2)

Xθ,irr
G (M) Xθ,irr

G (S)

Xθ,irr
G (H1)
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π1H2

π1M π1S

π1H1

Xθ,irr
G (H2)

Xθ,irr
G (M) Xθ,irr

G (S)

Xθ,irr
G (H1)

Xθ,irr
G (S) is a smooth (4n−6)-manifold

with Xθ,irr
G (Hi) submflds of dim 2n−3.

Xθ,irr
G (M)=Xθ,irr

G (H1)∩Xθ,irr
G (H2).

Everything has nat’l orientations, so
define hθG(M) to be the algebraic

intersection number of the Xθ,irr
G (Hi).

Important: Even for G= SU2, these
manifolds are all noncpt. But Xθ,irr

G (M)
is cpt when θ ∉DM and M small.

[DR] There exists h(M) ∈Z with

h(K)=hθSU2
(M)+hθSL2R

(M)

for all θ ∉DM.
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Unification: look at inside Xθ,irr
SL2C

(S).

Xθ,irr
SL2R

(S)

Xθ,irr
SU2

(S)

red reps
to S1

X(H1)X(H2)

hθSL2R
=1

hθSU2
=0

θ ∉DM

Resolution Xθ(S)
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Moral: in resolved picture h(M) is the alg ∩# of red and blue for all angles.

Xθ,irr
SL2R

(S)

Xθ,irr
SU2

(S)

red reps
to S1

X(H1)X(H2)

hθSL2R
=1

hθSU2
=0

θ ∉DM τ ∉DMη ∈DM

hτSL2R
=0

hτSU2
=1

Xθ,irr
SL2R

(S)

Xθ,irr
SU2

(S)

reps to U0 ={(
a b
0 a

) ∣∣∣ |a| =1
}

≈ Isom+(E2)

Resolution Xθ(S)


