## Math 20, Old HW

### Homework #1 Due Monday, September 27

Anton-Rorres: Section 1.1, #1, 2, 8, 11; Section 1.2 #3, 6, 7(a)(b), 13, 17.
### Homework #2 Due Wednesday, September 29

Anton-Rorres: Section 1.2 #14 (a), (b), 26; Section 3.1 #1 (a-d), #2
(a-c), 6, 7, 8.
### Homework #3 Due Friday, Oct 1

Anton-Rorres: Section 3.2: #1(a),(b), 3, 6

Section 3.3: #1(a)-(c), 2(a)-(c), 10, 12, 14(b).

Section 3.5: #10(a).
### Homework #4 Due Wednesday Oct 6

Section 3.3: #4(a), (c), 5(a)(c), 8(a)

Section 3.5: #1(b), 4(a), 5(b), 9(c), 13, 39(a), 40(b), 43(a)

Section 4.1: #1(a-c), 6(a), 11(b), 14(a-b)
### Homework #5 Due Friday Oct 8

Read Section 4.1

Section 3.5 #26, 37

Section 4.1 #10(a)

Section 4.2 #1, 2(a-b), 4(c-d), 6(a), 10, 12(a-b).

Not in book: N1: Find the matrix for reflection in the plane through the
line y = -x.

### Homework #6 Due Wed Oct 13

Section 4.2 #2(c), 7(b), 16(a), 19(b)

Section 1.3 #1, 3(e-h), 5(a-e), 6(b)

Section 1.4 #6

N1: Let T be the linear transformation from the plane to itself
which is rotation by 90 degrees. Let S be the transformation of the
plane which is reflection in the x-axis. Find the matrices associated
to T composed with S and S composed with T.

N2: Draw the image of the integer grid in R^2 under the linear
transformation which matrix is

-1 2

1 1

### Homework #7 Due Fri Oct 15

Section 1.3 #4(a, c, f, h), 6(a, c)

Section 1.4 #6, 7(a)

Section 1.5 #5(a), 6(a)

### Homework #8 Due Wed Oct 20

Section 1.5 #5(c)

Section 1.6 #1, 3

Section 2.1 #3, 7, 8, 10

Section 2.2 #2(a), 6, 9, 13

Section 2.3 #1(a), 4(a,d), 5(a-d)

Section 2.4 #9

### Homework # 9 Due Friday Oct 22

On Midterm Review sheet.

### Homework #10 Due Friday Oct 29

Section 5.2 #1, 7, 11(a)(c)

Section 5.3 #2, 6(a), 18

Section 5.4 #2(a-b), 3(a), 17, 18

Section 5.5 #2(a), 3(a), 6(a)

Section 5.6 #2(a,b), 5

### HW #11 Due Wednesday Nov 3

Section 5.2 #14(a-b) Section 5.3 #1(a-b), 8

Section 5.4 #7(a), 17(a), 21

Section 5.6 #2(c), 14 (first part of question only)

Section 6.4 #4(a), 6

Section 9.3 #2, 4

### HW #12 Due Friday Nov 5

N1: Suppose we want to determine to what extent a variable z depends
(linearly) on u and v. Suppose we have data (u, v, z):
(1, 1, 5), (1, 2, 3), (2, 1, 4), (2, 3, 5), (3, 4, 1), (2,5,6)

(a) Find the best fit for this data of a function of the form
z = a + b u + c v.

(b) Find the correlation between z and (u,v).

(For this problem, it's OK, and recommended, that you do your matrix
multiplication via calculator or computer).

Rest of Problems from the Supplement:

11.3 #7, 8, 9, 12, 13

11.4 #1, 10, 15, 20, 21, 30

### HW #13 Due Wednesday Nov 10

From the supplement:

11.4 #36, 38, 39

11.5 #2, 11, 16

11.6 #2, 6, 12, 13, 14

13.1 #6

13.2 #3, 27, 30, 32

13.3 #2, 5, 11

### HW #14 Due Fri Nov 12

From the supplement:

13.2 #34, 36

13.3 #3, 9, 23

13.4 #3, 4, 6, 9, 12, 14

13.5 #1, 5, 25, 27

### HW #15 Due Wed Nov 17

N1: Problem handed out in class.

Supp 13.5: 16, 17, 33, 37, 42

Supp 13.6: 1, 5, 7, 9, 16, 18

### HW #16 Due Fri Nov 19

From Supp

Chap 13 Review: 14, 15, 16, 17, 18

13.6: 6, 13

13.7: 1, 5, 13, 14, 25

### HW #17 Due Wed Nov 24

From Supp

13.9 #1, 5

14.1 #4, 7, 13, 16, 21, 23, 24

### HW #18 Due Mon Nov 30

From Supp

14.1 #22

14.2 #1, 6, 7, 8, 9

14.3 #1, 5

### HW#19 Due Wed Dec 1

On Midterm 2 review sheet.

### HW#20 Due Friday Dec 3

On Midterm 2 review sheet.

### Midterm 2 review sheet.

In PDF format: Review sheet.
Up to Math 20 page.