Math 416: HW 9 due Friday, April 12, 2024.

Webpage: http://dunfield.info/416
Office hours: Wednesday 2:30-3:30pm and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Problems:

1. Section 5.3 of [FIS], Problem 1 parts (c-j).
2. Prove all of the following results:

Theorem. Let M be an $n \times n$ matrix having real nonnegative entries, let v be a column vector in \mathbb{R}^{n} having nonnegative coordinates, and let $u \in \mathbb{R}^{n}$ be the column vector all of whose entries are 1. Then:
(a) $\quad M$ is a transition matrix if and only if $u^{t} M=u^{t}$.
(b) $\quad v$ is a probability vector if and only if $u^{t} v=(1)$.

Corollary.

(a) The product of two $n \times n$ transition matrices is also a transition matrix. Consequently, any power of a transition matrix is a transition matrix.
(b) The product of a transition matrix and a probability vector is again a probability vector.

Note: This is Theorem 5.14 of the 5th edition of [FIS] and Theorem 5.15 of the 4 th edition.
3. Prove that if a 1-dimensional subspace W of \mathbb{R}^{n} contains a nonzero vector with all nonnegative entries, then W contains a unique probability vector.
4. Section 5.3 of [FIS], Problem 7.
5. Section 6.1 of [FIS], Problem 3.
6. Section 6.1 of [FIS], Problem 8 parts (a) and (b).
7. Section 6.1 of [FIS], Problem 9.
8. Section 6.1 of [FIS], Problem 10 and Problem 15(a).
9. The conjugate transpose or adjoint of $A \in M_{n \times n}(\mathbb{C})$ is the matrix A^{*} where $\left(A^{*}\right)_{i j}=\overline{\left(A_{j i}\right)}$. That is, A^{*} is the result of taking the complex conjugates of the entries of A^{t}. Like the transpose, it satisfies $(A+B)^{*}=A^{*}+B^{*}$ and $(A B)^{*}=B^{*} A^{*}$. Define the Frobenius inner product on $M_{n \times n}(\mathbb{C})$ by $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)$, where $\operatorname{tr}(C)$ is the sum of the diagonal entries of C. Prove that this is really an inner product by checking the four axioms. Hint: To show $\langle A, A\rangle \neq 0$ when $A \neq 0$ observe that the diagonal entires of $A^{*} A$ are the standard inner product of the columns of A.

