Math 416: HW 7 due Friday, March 29, 2024.

Webpage: http://dunfield.info/416

Office hours: Wednesday 2:30–3:30pm and Thursday 2:00–3:00pm; other times possible by appointment. My office is 378 Altgeld.

Problems:

- 1. Prove the following result that was used in class. Suppose *E* is the elementary matrix obtained from I_n by the row operation *R*, that is, $I_n \xrightarrow{R} E$. Prove that for all $A \in M_{n \times n}(\mathbb{R})$ one has $A \xrightarrow{R} EA$. Said another way, left-multiplication by *E* implements the row operation that built *E* in the first place.
- 2. Prove that if $A, B \in M_{n \times n}(\mathbb{R})$ are similar matrices then det(A) = det(B).
- 3. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $QQ^t = I_n$.
 - (a) Prove that if *Q* is orthogonal then $det(Q) = \pm 1$.
 - (b) Give examples of orthogonal matrices for n = 2 with both possible values of the determinant.
- 4. Suppose $A, B \in M_{n \times n}(\mathbb{R})$ satisfy $AB = I_n$.
 - (a) Use the determinant to prove that *A* is invertible.
 - (b) Prove or disprove: $B = A^{-1}$.
- 5. Section 5.1 of [FIS], Problem 3 parts (a) and (c) if using the 5th edition, or Problem 2 parts (a) and (c) if using the 4th. (The problem is about computing $[T]_{\beta}$ and determining whether β consists of eigenvectors.)
- 6. Let *T* be a linear operator on a finite-dimensional vector space *V*.
 - (a) Show that *T* is invertible if and only if 0 is not an eigenvalue of *T*.
 - (b) If *T* is invertible, show that λ^{-1} is an eigenvalue of T^{-1} if and only if λ is an eigenvalue of *T*.
- 7. Suppose $T: V \to V$ is a linear operator with V finite-dimensional. Suppose $v \in V$ is an eigenvector of T with eigenvalue λ . As usual, $T^m: V \to V$ denotes composition of T with itself m times. Prove that v is also an eigenvector for T^m and give a formula for the corresponding eigenvalue.
- 8. Section 5.1 of [FIS]. Problem 4(a) if using the 5th edition, but Problem 3(a) if using the 4th. (This problem is about $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.)
- 9. Section 5.1 of [FIS], Problem 5 parts (b) and (h) if using the 5th edition, but Problem 4 parts (b) and (h) if using the 4th. (The problem is about finding the eigenvalues of *T* and a basis β for *V* such that $[T]_{\beta}$ is diagonal. Part (b) is about \mathbb{R}^3 and T(a, b, c) = (7a 4b + 10c, ...) and (h) is about $M_{2\times 2}(\mathbb{R})$).