Math 416: HW 7 due Friday, March 29, 2024.

Webpage: http://dunfield.info/416
Office hours: Wednesday $2: 30-3: 30 \mathrm{pm}$ and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Problems:

1. Prove the following result that was used in class. Suppose E is the elementary matrix obtained from I_{n} by the row operation R, that is, $I_{n} \xrightarrow{R} E$. Prove that for all $A \in M_{n \times n}(\mathbb{R})$ one has $A \xrightarrow{R} E A$. Said another way, left-multiplication by E implements the row operation that built E in the first place.
2. Prove that if $A, B \in M_{n \times n}(\mathbb{R})$ are similar matrices then $\operatorname{det}(A)=\operatorname{det}(B)$.
3. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $Q Q^{t}=I_{n}$.
(a) Prove that if Q is orthogonal then $\operatorname{det}(Q)= \pm 1$.
(b) Give examples of orthogonal matrices for $n=2$ with both possible values of the determinant.
4. Suppose $A, B \in M_{n \times n}(\mathbb{R})$ satisfy $A B=I_{n}$.
(a) Use the determinant to prove that A is invertible.
(b) Prove or disprove: $B=A^{-1}$.
5. Section 5.1 of [FIS], Problem 3 parts (a) and (c) if using the 5th edition, or Problem 2 parts (a) and (c) if using the 4 th. (The problem is about computing $[T]_{\beta}$ and determining whether β consists of eigenvectors.)
6. Let T be a linear operator on a finite-dimensional vector space V.
(a) Show that T is invertible if and only if 0 is not an eigenvalue of T.
(b) If T is invertible, show that λ^{-1} is an eigenvalue of T^{-1} if and only if λ is an eigenvalue of T.
7. Suppose $T: V \rightarrow V$ is a linear operator with V finite-dimensional. Suppose $v \in V$ is an eigenvector of T with eigenvalue λ. As usual, $T^{m}: V \rightarrow V$ denotes composition of T with itself m times. Prove that v is also an eigenvector for T^{m} and give a formula for the corresponding eigenvalue.
8. Section 5.1 of [FIS]. Problem 4(a) if using the 5th edition, but Problem 3(a) if using the 4th. (This problem is about $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$.)
9. Section 5.1 of [FIS], Problem 5 parts (b) and (h) if using the 5th edition, but Problem 4 parts (b) and (h) if using the 4th. (The problem is about finding the eigenvalues of T and a basis β for V such that $[T]_{\beta}$ is diagonal. Part (b) is about \mathbb{R}^{3} and $T(a, b, c)=(7 a-4 b+10 c, \ldots)$ and (h) is about $M_{2 \times 2}(\mathbb{R})$).
