Math 416: HW 5 due Friday, March 1, 2024.

Webpage: http://dunfield.info/416
Office hours: Wednesday 2:30-3:30pm and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Textbook: In the assignment, the main text is abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th or 5th edition, 2002 or 2019.

Problems:

1. Section 2.3 of [FIS], Problem 1.
2. Section 2.3 of [FIS], Problem 2.
3. Give matrices $A, B \in M_{2 \times 2}(\mathbb{R})$ where $A B$ is the zero matrix but $B A$ is not.
4. Section 2.3 of [FIS], Problem 3.
5. Section 2.3 of [FIS], Problem 4 (a, b).
6. Section 2.4 of [FIS], Problem 1.
7. Suppose A and B are invertible $n \times n$ matrices.
(a) Prove that $(A B)^{-1}=B^{-1} A^{-1}$.
(b) Prove that $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$
8. Let V be a finite-dimensional vector space over \mathbb{R} with basis β, and set $n=\operatorname{dim} V$. Consider the linear transformation $\phi_{\beta}: V \rightarrow \mathbb{R}^{n}$ defined by $\phi_{\beta}(v)=[v]_{\beta}$.
(a) Prove that ϕ_{β} is an isomorphism.
(b) Use part (a) to show that any two vector spaces of dimension n are isomorphic. This gives an alternate proof of Theorem 2.19 of [FIS].
9. (a) Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that both A and B are invertible.
(b) Give an example of two noninvertible matrices whose product is invertible. Hint: Look at non-square matrices.
(c) Prove or give a counterexample: If A and B are nonzero $n \times n$ matrices with $A B$ the zero matrix then A is not invertible.
10. Find the inverse of the following matrix, and give a direct check of your answer.

$$
A=\left(\begin{array}{rrr}
4 & -2 & -5 \\
-4 & 1 & 4 \\
-3 & 1 & 3
\end{array}\right)
$$

