Math 416: HW 4 due Friday, February 23, 2024.

Webpage: http://dunfield.info/416
Office hours: Wednesday 2:30-3:30pm and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Textbooks: In the assignment, the main text is abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th or 5th edition, 2002 or 2019.

Problems:

1. Section 2.1 of [FIS], Problem 1.
2. Section 2.1 of [FIS], Problems 2 and 3.
3. Section 2.1 of [FIS], Problem $9(a, b, c)$.
4. Section 2.1 of [FIS], Problem 10.
5. Section 2.1 of [FIS], Problems 18.
6. Let V, W be vector spaces, with $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$, and $n>m$.
(a) Show that there is no one-to-one linear transformation $T: V \rightarrow W$.
(b) Show that there is no onto linear transformation $T: W \rightarrow V$ (notice that V, W have flipped in this expression!)
(c) Show that a linear map $T: V \rightarrow W$ need not be onto by giving an example where it is not.

Hint: See Appendix B of [FIS] for the definitions of "onto" and "one-to-one" and consult Theorems 2.4 and 2.5 in §2.1 of [FIS].
7. We define the linear transformation $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be rotation counter-clockwise about the origin through angle θ. Let T_{x} be the transformation that reflects in the x-axis.
(a) Write down the matrices of T_{θ} and T_{x} with the respect to the standard basis $\beta=\left\{e_{1}, e_{2}\right\}$ for \mathbb{R}^{2}.
(b) Show that for $\theta \in(0, \pi) \cup(\pi, 2 \pi)$ one has

$$
T_{x} \circ T_{\theta} \neq T_{\theta} \circ T_{x} .
$$

(c) Next, show that there is some angle ψ such that

$$
T_{x} \circ T_{\psi}=T_{\theta} \circ T_{x} .
$$

What is the relationship between θ and ψ ? Discuss the geometric meaning of this computation.
8. Section 2.2 of [FIS], Problem $2(a, b, c)$.
9. Section 2.2 of [FIS], Problem 3.
10. Section 2.2 of [FIS], Problem 5.

