Math 416: HW 1 due Friday, January 26, 2024.

Course webpage: http://dunfield.info/416
Office hours: Wednesday 2:30-3:30pm and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Textbooks: In the assignment, the two texts are abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th or 5th edition, 2002 or 2019.
[B] Breezer, A First Course in Linear Algebra, Version 3.5, 2015.

Problems:

1. Problem 1 from Section 1.2 of [FIS]. You do not need to justify your answers.
2. Prove the following statements, which are Corollaries 1 and 2 of Section 1.2 of [FIS]. In both cases, V is a vector space over the real numbers.
(a) The vector 0 required by axiom (VS 3) is unique.
(b) For each x in V, there is only one y in V satisfying $x+y=0$.
3. Let V be all pairs $\left(a_{1}, a_{2}\right)$ where a_{1} and a_{2} are in \mathbb{R}. Define addition of elements of V coordinatewise, and define scalar multiplication by

$$
c\left(a_{1}, a_{2}\right)= \begin{cases}(0,0) & \text { if } c=0 \\ \left(\frac{a_{1}}{c}, \frac{a_{2}}{c}\right) & \text { if } c \neq 0\end{cases}
$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.
4. Problems 8 and 9 from Section 1.3 of [FIS].
5. A square matrix A is called upper triangular if all entries lying below the diagonal are 0 , that is, $A_{i j}=0$ whenever $i>j$. Show that the upper triangular matrices form a subspace of $M_{n \times n}(\mathbb{R})$.
6. For a nonempty set S, we use $\mathcal{F}(S, \mathbb{R})$ to denote the set of all functions from S to \mathbb{R}; as described in Example 3 on page 9 of [FIS], this is a vector space over \mathbb{R}. Fix a point s_{0} in S and consider the subset W of $\mathcal{F}(S, \mathbb{R})$ consisting of all functions where $f\left(s_{0}\right)=0$.
(a) Show that W is a subspace of $\mathcal{F}(S, \mathbb{R})$.
(b) Consider instead the subset where $f\left(s_{0}\right)=1$. Is this also a subspace? Justify your answer.
7. Parts (a), (b), and (c) of Problem 2 of Section 1.4 of [FIS].

