
LECTURE NOTES (PART 2), MATH 500 (FALL 2022)

CHARLES REZK

1. Review: Rings

A ring is a set R with binary operations + and · satisfying F 23 Sep
ring• (R,+) is an (additive) abelian group.

• · is associative: x · (y · z) = (x · y) · z.
• Distributative laws: x · (y + z) = (x · y) + (x · z) and (x+ y) · z + (x · z) + (y · z).

A ring is commutative if a · b = b · a for all a, b ∈ R. commutative

A ring with idenity has an element 1 ∈ R such that 1 · a = a = a · 1 for all a ∈ R. ring with idenity

Remark. I’ll usually write “ab” instead of “a · b”, but other symbols are also sometimes used, e.g.,
“a× b”.

Also, we assume multiplication has “higher precedence” than addition, so we can write “ac+ bc”
instead of “(ac) + (bc)”.

Remark (About rings without identity). Our book, like most textbooks, allows for the existence of
rings without identity (meaning: without multiplicative identity). It is true there are some contexts
where you want your definition of ring to allow for this. However in many contexts (e.g., most
algebra, algebraic geometry, etc) rings are assumed by default to have an idenity. You must pay
attention to context to determine whether rings are assumed to have identity.

Furthermore, Dummit and Foote give virtually no examples of rings without identity (except
for ideals inside ring with identity, which for DF are considered to be “subrings”, but not by most
people). In most sections of Chapters 7–12, rings are assumed to have identity.

I will follow D& F’s definitions here, and say “ring with identity” when I want an identity element
(which is basically always). But I will also avoid calling something a ring if it does not have an
identity.

To complicate matters: sometimes people drop the associativity condition on multiplication, and
speak of “nonassociative rings”. We won’t do this.

Remark. Some people who require that rings have 1, also write rng (pronounced “rung”) for rings rng

which do not necessarily have an identity. (Get it?)

We have the following basic facts about a ring. The proofs rely on the distributive law.

Proposition. Let R be a ring.

(1) a0 = 0 = 0a for all a ∈ R.
(2) (−a)b = −(ab) = a(−b) for all a, b ∈ R.
(3) (−a)(−b) = ab for all a, b ∈ R.
(4) If R has an identity, it is unique and (−1)a = −a = a(−1) for all a ∈ R.

Example (Trivial ring). Let R = {0} with obvious addition and multiplication. This is a ring. In
fact, it is a commutative ring, and has an identity: 1 = 0.

Conversely: the trivial ring is the only ring with identity such that 1 = 0. (Proof: if 1 = 0 then
a = a1 = a0 = 0.)

Sometimes you want to exclude the trivial ring, so you speak of a “ring with identity 1 6= 0”.

Date: November 2, 2022.
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Units and zero divisors. Fix a ring R.

• If 1 ∈ R, then a ∈ R is a unit if there exists b ∈ R such that ab = 1 = ba. If such b exists it unit

is unique with this property, and we write b = a−1.
We write R× for the set of units, which is a group under multiplication.

• a ∈ R is a zero divisor if a 6= 0 and there exists b ∈ R r {0} such that either ab = 0 or zero divisor

ba = 0.
Note that a zero divisor is never a unit.

• a ∈ R is a non-zero divisor, or cancellable, if a 6= 0 and it is not a zero-divisor. non-zero divisor

cancellableIf a is cancellable, then either ab = 0 or ba = 0 imply b = 0.

2. Review: Fields and domains

We have the following special types of rings.

• A division ring (or skew-field) is a ring with 1 6= 0 such that every non-zero element is a division ring

skew-fieldunit.
• A field is a commutative division ring. field

• An integral domain (or just domain) is a commutative ring with 1 6= 0 which has no zero integral domain

domaindivisors.
That is, a domain is a commutative ring with identity such that 1 6= 0, and ab = 0 implies

either a = 0 or b = 0 for all a, b ∈ R.
Note that every field is a domain.
Also, sometimes people talk about noncommutative domains.

Proposition. Every finite integral domain is a field.

Proof. Any a ∈ Rr {0} is cancellable, so x 7→ ax : R→ R is injective. Since |R| <∞ it is bijective,
so there exists b ∈ R such that ab = 1. �

A domain (or integral domain) is a commutative ring in which 1 6= 0, and in which xy = 0 domain

integral domainimplies either x or y is 0. This gives cancellation: xy = xz implies y = z whenever x 6= 0. (It is
possible to talk about non-commutative domains, but this is not standard terminology.)

Thus, a commutative R 6= 0 is a domain iff 0 is the only zero divisor, and is a field iff every
non-zero element is a unit.

Proposition. Every finite domain is a field.

Proof. R is a domain exactly if for all non-zero r ∈ R, multiplication by r is injective.
R is a field exactly if for all non-zero r ∈ R, multiplication by r is bijective.
If R is finite, a function φ : R→ R is injective iff it is bijective. �

3. Review: Subrings

A subring of a ring R is a subset S ⊆ R which is subring

(1) a subgroup with respect to +, and
(2) is closed under multiplication.

I’ll call it a subring with identity if in addition 1R ∈ S. (Warning: a subring S ⊂ R can have an subring with identity

identity element which is not equal to 1R.)

Exercise. Show that S ⊆ R is a subring iff (i) 0 ∈ S, (ii) a, b ∈ S imply a+ b ∈ S, (iii) a ∈ S implies
−a ∈ S, (iv) a, b ∈ S imply ab ∈ S.

Exercise. Let R be an integral domain and S ⊆ R a subring. Show that if S has an identity element,
then 1S = 1R.
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4. Review: Basic examples of rings

Example (Trivial rings). Take any additive group (R,+), and define a multiplication by ab = 0.
This is always a commutative ring, but never a ring with identity (unless R = {0}).

Example. The integers Z, a commutative ring with identity.
For each n ∈ Z, the subset nZ = {nk | k ∈ Z } is a subring, but not a subring with identity

(unless n = ±1).
(Note that 0Z = {0} has an identity element, which is 0, but this is not the same as the identity

element of Z, which is 1.)

Example. The rational numbers Q, real numbers R, complex numbers C, are fields.

Example. For n ≥ 1 the set Z/n (or Z/nZ) of integers modulo n is a commutative ring with identity.
It is a field iff n is a prime number.

Example. The ring H of quaternions. Here H is the set R4 of 4-tuples of real numbers, where quaternions

we write “a+ bi+ cj + dk” instead of “(a, b, c, d)”. Addition is componentwise. Multiplication is
defined using the distributive law and the identities

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
The quaternions are a division ring. Proof: mostly straightforward, though associativity is tedious
to check. Multiplicative inverses are given by

(a+ bi+ cj + dk)−1 =
a− bi− cj − dk
a2 + b2 + c2 + d2

.

Example. If X is any set and R a ring, then the set

F(X,R) = {functions f : X → R}
is a ring, using componentwise addition and multiplication: (f + g)(x) := f(x) + g(x), (fg)(x) =
f(x)g(x). It has identity if R does, is commutative if R is.

You are familiar with the case of F(R,R), the ring of real valued functions on R. The subset of
functions with compact support (i.e., f : R→ R such that ∃a ≤ b with f(x) = 0 when x /∈ [a, b]) functions with compact

supportis a subring without identity.

Example (Matrix rings). Let R be any ring and n ≥ 1. The set Mn×n(R) of n× n matrices with
entries in R is a ring, where addition and multiplication the usual ones for matrices: if A = (aij)
and B = (bij), then A+B = (aij + bij) and AB = (

∑n
k=1 aikbkj).

If R has identity then so does Mn×n(R), namely the identity matrix I.
If R is commutative, Mn×n(R) is not generally commutative (unless n = 1).

Product rings. Let R and S be rings. Then we can make the set R× S of ordered pairs into a
ring, by componentwise addition and multiplication:

(r, s) + (r′, s′) := (r + r′, s+ s′), (r, s)(r′, s′) := (rr′, ss′).

This is called the product ring. If R and S are commutative, then R× S are commutative. If R product ring

and S have identity, then R× S has an identity, which is (1R, 1S).

5. Review: Homomorphisms of rings

Let R and S be rings. A ring homomorphism φ : R→ S is a function satisfying ring homomorphism

• φ(a+ b) = φ(a) + φ(b),
• φ(ab) = φ(a)φ(b), and
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Note: if R and S are rings with identity, it is possible that a ring homomorphism does not
preserve identity, i.e., that φ(1R) 6= 1S .

Warning. In contexts where rings are assumed to have 1, ring homomorphisms are also assumed
to preserve identity. I will call these identity preserving ring homomorphisms. identity preserving ring

homomorphisms

Example. Let R and R′ be rings, and let S = R × R′ be the product ring. Then the functions
φ1 : R→ S and φ2 : R′ → S defined by φ1(x) = (x, 0) and φ2(x) = (0, x) are ring homomorphisms.

However, if R and R′ have identity 1 6= 0 (and so S has identity), neither of these homomorphism
preserve identity.

Example. For any two rings, the function φ : R → S defined by φ(x) = 0 for all x ∈ R is a ring
homomorphism (under our definitions), called the zero homomorphism. zero homomorphism

Warning. The zero homomorphism does not preserve identity, unless S = {0}.

The image φ(R) ⊆ S of a ring homomorphism φ : R → S is just the image of φ as a function. image

The image is a subring of S.
The kernel Kerφ = {x ∈ R | φ(x) = 0 } of a ring homomorphism φ is the kernel as a map of kernel

additive groups.
An isomorphism of rings is a ring homomorphism φ : R→ S which is also a bijection. In this isomorphism of rings

case, the inverse function φ−1 : S → R is also an isomorphism of rings.

6. Review: Ideals and quotient rings

Let R be a ring, and I ⊆ R a subset. For r ∈ R we write

rI := { rx | x ∈ I }, Ir := {xr | x ∈ I }.
We say that I is

• a left ideal if I is an subgroup of (R,+), and if rI ⊆ I for all r ∈ R, left ideal

• a right ideal if I is a subgroup of (R,+), and if Ir ⊆ I for all r ∈ R, right ideal

• a two-sided ideal if I is both a left ideal and a right ideal. two-sided ideal

We will sometimes call two-sided ideals simply ideals. ideals

Note: if R is a commutative ring, all three of these notions are the same.
The unit ideal of R is just I = R. Note that this is the only ideal (of any type) in R which unit ideal

contains 1R.

Remark. With our definition of subring, all (two-sided) ideals are subrings. With the more common
notion (all rings have 1, all subrings have this same 1), only the unit ideal is also a subring.

Given an ideal I ⊆ R, let R/I be the (additive) quotient group of (R,+), so that addition on
R/I is defined by

(a+ I) + (b+ I) = (a+ b) + I, a, b ∈ R.
We can define a product on R/I by

(a+ I)(b+ I) := (ab) + I, a, b ∈ R.
This is well-defined exactly because I is a two-sided ideal. We call R/I with this ring structure the
quotient ring of R by I. quotient ring

Note: If R is commutative so is R/I. If R has identity, then so does R/I, and 1R/I = 1 + I.
The function π : R→ R/I defined by π(a) = a+ I is a ring homomorphism, called the quotient

homomorphism. quotient homomor-
phism
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7. First isomorphism theorem for rings

Here’s the “homomorphism theorem”. M 26 Sep

Proposition. Let φ : R→ S be a homomorphism of rings, and I ⊆ R an ideal. If I ⊆ Ker(φ), then
there exists a unique ring homomorphism φ : R/I → S such that φ(a+ I) = φ(a).

R
φ
//

π
����

S

R/I
φ

==

The proof is straightforward: the formula for φ is well-defined exactly because I ⊆ Kerφ.

Theorem (First isomorphism theorem for rings). If φ : R → S is a ring homomorphism, then
Ker(φ) is an ideal of R, φ(R) is a subring of S, and we have an isomorphism R/Kerφ ≈ φ(R) of
rings.

That is, the homomorphism φ factors through an isomorphism φ : R/Kerφ
∼−→ φ(R).

R
φ

//

$$ $$

S

R/Kerφ
φ

∼
// φ(R)

==

==

Note: if the rings have identity, and φ preserves identity, then so does φ.

Corollary. Every ideal is the kernel of some ring homomorphism.

Another way to describe what this is saying: there is an injective function{
ring homomorphisms R/I → S

}
�
{

ring homomorphisms R→ S
}

defined by φ 7→ φ ◦ π, whose image is the set of φ : R→ S such that I ⊆ Kerφ.

8. Other isomorphism theorems for rings

There are more isomorphism theorems. You can generate them from the ones for groups, using
the analogy “subgroup : subring :: normal subgroup : ideal”.

Recall that for additive subgroups A,B ⊆ R, we let A+B := { a+ b | a ∈ A, b ∈ B }.

Theorem (Second (diamond) isomorphism theorem for rings). Let A ⊆ R be a subring, and I ⊆ R
an ideal.

(1) A+ I is a subring of R.
(2) I is an ideal of A+ I.
(3) A ∩ I is an ideal of A,
(4) A/(A ∩ I) ≈ (A+ I)/I.

The isomorphism of (4) sends x+ (A ∩ I) 7→ x+ I.

Theorem (Third isomorphism theorem for rings). Let I, J ⊆ R be ideals with I ⊆ J . Then:

(1) J/I is an ideal in R/I, and
(2) R/J ≈ (R/I)/(J/I).

The isomorphism of (2) sends x+ J 7→ (x+ I) + (J/I).
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Theorem (Fourth (lattice) isomorphism theorem for rings). Let I ⊆ R be an ideal. Then we have
inverse bijections

{ subrings A ⊆ R | I ⊆ A } oo ∼ // {subrings A ⊆ R/I}

A � // A/I

π−1A A�oo

where π−1A = {x ∈ R | π(x) ∈ A }. Furthermore for subrings A,B ⊆ R with I ⊆ A ∩B, we have

(1) A ⊆ B iff A/I ⊆ B/I.
(2) (A ∩B)/I = (A/I) ∩ (B/I).
(3) A is an ideal in R iff A/I is an ideal in R/I.

9. Quadratic integer rings

See DF§7.1.
Let D be a squarefree integer (i.e., its prime factorization contains no repeated factors). Let

Q(
√
D) := { a+ b

√
D ∈ C | a, b ∈ Q }.

This is a subring of C, commutative with identity. In fact, Q(
√
D) is a field: inverses are given by

(a+ b
√
D)−1 =

1

a+ b
√
D

a− b
√
D

a− b
√
D

=
a− b

√
D

a2 − b2D
.

(Note that a2 − b2D 6= 0 since D is not a perfect square.)
Let

Z[
√
D] := { a+ b

√
D ∈ C | a, b ∈ Z }.

This is a subring of Q(
√
D).

Example. Z[i] = { a+ bi | a, b ∈ Z } ⊆ C is the ring of Gaussian integers. Gaussian integers

In some cases, we can produce a slightly larger subring of Q(
√
D). If D ≡ 1 (mod 4), let

ω :=
1 +
√
D

2
.

Note that ω2 = (1 +D + 2
√
D)/4 = k + ω where k = (D − 1)/4 ∈ Z. Define

O = OQ(√D)
:=

{
{ a+ b

√
D | a, b ∈ Z } if D ≡ 2, 3 (mod 4),

{ a+ bω | a, b ∈ Z } if D ≡ 1 (mod 4).

In either case this is a subring of Q(
√
D). When D ≡ 2, 3 (mod 4) then O = Z[

√
D]. But when

D ≡ 1 (mod 4) then O ) Z[
√
D]. In either case it is called the ring of integers in Q(

√
D). ring of integers

Example. Let D = −3 ≡ 1 (mod 4), so ω = (1 + i
√

3)/2, and ω2 = ω − 1. We have rings

Z[
√
−3] ⊆ OQ(√−3).

The larger ring O = OQ(√−3) is the ring of Eisenstein integers. You can show that elements of O Eisenstein integers

are those of the form (a+ bi
√

3)/2, with a, b ∈ Z and a ≡ b (mod 2).

Proposition. Suppose D is squarefree and D ≡ 1 (mod 4). Let α = a+ b
√
D ∈ Q(

√
D), a, b ∈ Q.

The following are equivalent.

(1) α ∈ OQ(√D).

(2) a− b ∈ Z and 2a ∈ Z.
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(3) a = m/2 and b = n/2 where m,n ∈ Z and m ≡ n (mod 2).

Proof. Exercise. �

Define the norm map Q(
√
D)→ Q by norm map

N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 − b2D ∈ Q.

Here are some easily verified properties.

• N(α) = 0 iff α = 0.
• N(αβ) = N(α)N(β).
• If α ∈ OQ(√D) then N(α) ∈ Z.

Proposition. α ∈ OQ(√D) is a unit in OQ(√D) iff N(α) = ±1.

Proof. Since N : O√D → Z is multiplicative, it takes units to units.

If α = a+ b
√
D ∈ O√D such that N(α) = ±1, then α−1 = (a− b

√
D)/N(α), which is also seen

to be an element of O. �

In other words, units in OQ√D correspond to integer solutions of Pell’s equation x2 −Dy2 = ±1.

Exercise. If D < 0, then O× is a finite group, while if D > 0 then O× is an infinite group.

10. Group rings and monoid rings

Let G be a monoid (with mulitplication written as “gh”, and identity element “e”). For instance,
G could be a group. (Since I won’t use existence of inverses in what follows, everything works for a
monoid too.)

Let R be a commmutative ring with identity.
Let R[G] (or sometimes just RG, which is what the book writes) be the set of “finite formal

sums” ∑
g∈G

ag[g], ag ∈ R.

More precisely, an element of R[G] is a tuple a = (ag)g∈G of elements ag ∈ R indexed by elements
of G, such that all but finitely many ag are 0.

We make R[G] a ring by: “componentwise” addition, and with mulitplication defined using the
distributive law and the formula

(ai[gi])(aj [gj ]) := (aiaj)[gk], ai, aj ∈ R, gigj = gk ∈ G.
More generally, ∑

g∈G
ag[g]

∑
g′∈G

bg′ [g
′] =

∑
h∈G

ch[h], ch =
∑
gg′=h

agbg′ .

The ring R[G] has an identity element 1 = [e] where e ∈ G is the identity element of G. The
ring R[G] is not usually commutative, but is commutative if R is a commutative ring and G has
commutative multiplication. The ring R[G] is called the monoid ring of the monoid G, and the monoid ring

group ring if G is a group. group ring

Remark. If G = {g1, . . . , gn} has a finite number n of elements, we can just write elements of R[G]
as
∑n

k=1 akgk with ak ∈ R.0

Example. Let G = 〈g | g2〉 = {e, g}, the group of order 2. Then Q[G] is the set of expressions of
the form

a0[e] + a1[g], a0, a1 ∈ Q,
with operations

(a0[e] + a1[g]) + (b0[e] + b1[g]) = (a0 + b0)[e] + (a1 + b1)[g],
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(a0[e] + a1[g])(b0[e] + b1[g]) = (a0b0 + a1b1)[e] + (a0b1 + a1b0)[g].

Note that Q[G] is not a field: ([e] + [g])([e]− [g]) = [1]2 − [g]2 = [e2]− [g2] = 0.

11. Polynomial rings

Fix a commutative ring R with identity. Let R[x] be the set of finite formal expressions

f =
∑
k∈Z≥0

akx
k.

More precisely, an element of R[x] is an infinite sequence (a0, a1, a2, . . . ) of elements of R such that
all but finitely many are 0. Thus, every element of R[x] can be written as

N∑
k=0

akx
k

for some N . Elements of R[x] are polynomials in x with coefficents in R. polynomials

The degree of f ∈ R[x] is the largest k such that ak 6= 0. By convention we say that deg f = −∞, degree

so deg : R[x]→ Z≥0 ∪ {−∞}.
We give R[x] the structure of a ring, with “obvious” addition and multiplication. If f =

∑
akx

k

and g =
∑
bkx

k, then

f + g =
∑
k

(ak + bk)x
k, fg =

∑
k

( k∑
i=0

aibk−i

)
xk.

This is a commutative ring with identity, which is the constant polynomial 1.

Remark. Just as you can form group rings, you can form a monoid ring R[M ] for a monoid M . Let
M = {xk | k ∈ Z≥0 }, with obvious product. Then the polynomial ring R[x] is the same as the
monoid ring R[M ].

A constant polynomial is one with deg f = 0 or f = 0. These form a subring, which can be constant polynomial

identified with the ring R.

Proposition. Suppose R is an integral domain.

(1) If f, g ∈ R[x], then deg fg = deg f + deg g.
(2) (R[x])× = R×.
(3) R[x] is an integral domain.

Proof. For (1), we use the convention −∞+ n = −∞ = n+ (−∞) for any n ∈ Z≥0 ∪ {−∞}. (This
makes Z≥0 ∪ {−∞} into a commutative semigroup under +.)

The proof of (1) is straightforward, but uses that R is an integral domain: if R is not an integral
domain, we only have deg fg ≤ deg f + deg g.

For (2), note that deg(1) = 0, and that for n,m ∈ Z≥0 ∪ {−∞}, if n+m = 0 then n = m = 0,
and that f ∈ Rr {0} iff deg f = 0.

Then (3) is clear, since fg = 0 iff deg f + deg g = −∞, iff either f = 0 or g = 0. �

Since R[x] is a ring, we can repeat the procedure, and consider R[x][y]; elements are
∑
ajy

j

where each aj = aj(x) =
∑
aijx

i. You can show that R[x][y] is isomorphic to R[y][x]. It is usual to
call this ring R[x, y], and write elements as finite sums of the form∑

aijx
iyj .

In particular, if R is a domain, so is R[x1, . . . , xn].
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12. Evaluation of polynomials

There is a recipe for describing homomorphisms out of a polynomial ring. F 30 Sep

Proposition. Let R,S be a commutative rings with identity. Then for every pair (φ, a) consisting
of

(1) a ring homomorphism φ : R→ S which preserves 1, and
(2) an element a ∈ S,

there exists a unique ring homomorphism φ : R[x]→ S which preserves 1, such that

φ(r) = φ(r) for r ∈ R ⊆ R[x],, and φ(x) = a.

Proof. Existence. Define a function φ : R[x]→ S by

φ

( n∑
k=0

ckx
k

)
:=

n∑
k=0

φ(ck)a
k.

It is a straightforward exercise to show that this φ is a ring homomorphism preserving identity.
Uniqueness. We can show from the hypotheses that any φ : R[x]→ S with the given properties

has the formula I gave above.

φ

( n∑
k=0

ckx
k

)
=

n∑
k=0

φ(ckx
k)

=
n∑
k=0

φ(ck)φ(x)k

=
n∑
k=0

φ(ck)a
k.

�

A special case is when S = R and φ = id. Then φ : R[x]→ R is a ring homomorphism defined by

f =
n∑
k=0

ckx
k 7−→

n∑
k=0

cka
k.

We usually call the output f(a), and we call the homomorphism evaluation at a, sometimes evaluation at a

written eva : R[x]→ R. That this is a ring homomorphism means you have formulas

(f + g)(a) = f(a) + g(a), f(a)g(a) = (fg)(a), f, g ∈ R[x], a ∈ R,
which you already know.

Recall that F(R,R) is the ring of functions f : R→ R, with “pointwise” operations. Let

ψ : R[x]→ F(R,R), φ(f)
(
a
)

:= eva(f) = f(a).

Exercise. ψ is a ring homomorphism, preserving 1.

The function ψ turns a polynomial into a function on the ring. But ψ isn’t generally injective,
even if R is a field. Thus, polynomials are not really the same thing as functions.

Example. Let R = Fp = Z/p, the integers modulo p. Let f = xp− p ∈ R. Then eva(f) = ap− a = 0
for all a ∈ Fp, by Fermat’s little theorem. Thus ψ : Fp[x]→ F(Fp,Fp) is not injective.

(Exercise: describe the kernel of ψ.)
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13. Ideals generated by subsets

Given a subset A ⊆ R, we let (A) ⊆ R be the ideal generated by A, defined to be ideal generated by A

(A) :=
⋂

ideals I ⊆ R
such that A ⊆ I

I

Exercise: (A) is an ideal in R, and is the smallest ideal containing the set A.
We define the following subsets of R.

• RA = { r1a1 + · · ·+ rkak | ri ∈ R, ai ∈ A, k ≥ 0 }.
• AR = { a1r1 + · · ·+ akrk | ri ∈ R, ai ∈ A, k ≥ 0 }.
• RAR = { r1a1r′1 + · · ·+ rkakr

′
k | ri, r′i ∈ R, ai ∈ A, k ≥ 0 }.

In each case we always assume 0 is an element of these sets (corresponding to sums with k = 0).
If A = {a1, . . . , an} is a finite set, we write (a1, . . . , an) for A.

Proposition. Suppose R is a ring with 1, and let A be a subset of a ring R. Then

(A) = RAR.

If R is a commutative ring with identity, then

(A) = RA = AR = RAR.

Proof. For the first claim, note that

(1) RAR is an ideal in R, since it is an additive subgroup, and rRAR ⊆ RAR and RARr ⊆
RARr for all r ∈ R. (This uses that Rr ⊆ R since 1 ∈ R.)

(2) We have A = 1A1 ⊆ RAR by definition, and therefore (A) ⊆ I since I is an ideal.
(3) We have A ⊆ (A) by definition, and so RAR ⊆ (A) since (A) is an ideal.

This proves (A) = RAR.
The second claim is clear. �

Remark. If R does not have 1, this doesn’t work, because A might not be a subset of RAR. Instead,
you can say

(A) = { a1 + · · ·+ ak − a′1 − · · · − a′` + x+ y + z | ai, a′j ∈ A, x ∈ RA, y ∈ AR, z ∈ RAR }.

Remark. It is easy to see that RA is the smallest left ideal containing A, and AR is the smallest
right ideal containing A.

14. Principal ideals

A principal ideal is an ideal I such that I = (a) for some single element a ∈ R. principal ideal

In a ring with 1,

(a) = { r1ar′1 + · · ·+ rkar
′
k | ri, r′i ∈ R, k ≥ 0 } = RaR.

When R is commutative, the distributive law lets simplifies this to

(a) = { ra | r ∈ R } = Ra.

Not every ideal is principal.

Example. In R = Z[x], let I = (2, x). I claim that I is not principal. The proof uses the degree
function deg : Z[x]→ Z≥0 ∪ {−∞}, and in particular the property that deg(fg) = deg f + deg g.

We suppose I = (p) = pR for some p ∈ Z[x] and derive a contradiction. Since 2, x ∈ I there must
exist f, g ∈ Z[x] such that

2 = pf, x = pg.
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Applying degree, we find that

0 = deg p+ deg f, 1 = deg p+ deg g, =⇒ deg p = 0, deg f = 0, deg g = 1.

Thus both p and f are constant polynomials, so clearly p, f ∈ {±1,±2}, and g = a+ bx for some
a, b ∈ Z with b 6= 0.

If p = ±2, then x = pg = ±2(a+ bx) = ±(2a+ 2bx) whence 1 = ±2b, which is clearly impossible.
Thus p = ±1. But then 1 ∈ I, whence 1 = 2m + xn for some m,n ∈ Z[x]. Evaluating at 0 gives
1 = 2m(0) + 0n(0) = 2m(0), which is impossible since m(0) ∈ Z.

Example. Let R = F [x, y], with F any field. Then the ideal I = (x, y) is not principal. (Exercise.)

15. Ideals and fields

Proposition. A non-zero commutative ring R with identity is a field if and only if the only R 6= {0}
and the only ideals are {0} and R.

Proof. We start with an observation: a ∈ R is a unit iff Ra = R. Here’s the proof. =⇒ If a ∈ R×,
then 1 = a−1a ∈ Ra, so Ra is the unit ideal. ⇐= If Ra = R then 1 ∈ Ra, so there exists b ∈ R such
that 1 = ba, so b = a−1 and a is a unit.

Now we prove the proposition. If R is a field, then 1 6= 0, so R 6= {0}. If I ⊆ R is an ideal and
I 6= {0}, choose any a ∈ I with a 6= 0. Then a is a unit, so R = Ra ⊆ I, so I = R.

Conversely, suppose R 6= {0} with only ideals {0} and R. Since R 6= {0} we have 1 6= 0. If
a ∈ Rr {a} then Ra is an ideal, and since Ra 6= {0} then Ra = R, so a is a unit. �

Proposition. Any non-zero ring homomorphism φ : F → R from a field to a ring is injective.

Proof. If φ 6= 0 then Kerφ 6= R, and since the kernel is an ideal we must have Kerφ = {0}. �

There is a non-commutative analogue.

Exercise. A non-zero ring R with identity is a division ring if and only if the only left ideals and the
only right ideals are 0 and R.

Exercise. Let F be a field and R = Mn×n(F ). Then the only 2-sided ideals of R are 0 and R, but R
is not a division ring.

16. Maximal and prime ideals

Maximal ideals. Let R be a ring with 1.
An ideal M ⊆ R is maximal if M 6= R and the only ideals containing M are M and R. (It maximal

should be called a “maximal proper ideal”, but isn’t.)
Note: M 6= R is equivalent to 1 /∈M .

Proposition. Let R be commutative ring with 1. An ideal M ⊆ R is maximal if and only if R/M
is a field.

Proof. By the lattice isomorphism theorem, the ideals of R/M correspond exactly to ideals of R
which contain M . So M is maximal in R iff R/M has exactly two ideals, i.e., is a field. �

Prime ideals. Let R be a commutative ring with 1.
An ideal P ⊆ R is prime if P 6= R, and if ab ∈ P implies either a ∈ P or b ∈ P . prime

Example. In Z, the ideal (n) is prime iff n = ±p where p is a prime number.

Remark. There is a formulation of “prime ideal” for non-commutative rings, but it is more complicated
to state. See, e.g., wikipedia.

Proposition. Let R be a commutative ring with 1. Then P ⊆ R is prime if and only if R/P is an
integral domain. All maximal ideals are prime.
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Proof. The first statement is immediate from the definition of integral domain: D is an integral
domain iff 1 6= 0 and xy = 0 implies x = 0 or y = 0 for all x, y ∈ D. Applied to D := R/P , this
recovers the the condition for the ideal P to be prime.

For the second statement, note that if M is maximal, then R/M is a field and thus an integral
domain. �

Existence of maximal ideals. Here is the big theorem.

Theorem. In any ring with identity, every proper ideal is contained in a maximal ideal.

Note that this implies that every non-0 ring (with identity) has at least one maximal ideal. (The
ring 0 has no proper ideals, so the proposition doesn’t apply to it.) I will prove this soon.

Corollary. Every non-zero commutative ring with identity has a quotient ring which is a field.

17. Zorn’s lemma

The proof of existence of maximal ideals uses “Zorn’s lemma”. This is a statement about partially M 3 Oct
ordered sets which is a non-trivial consequence of the axiom of choice.

A partial order on a set X is a relation ≤ on X which is partial order

• reflexive: x ≤ x for all x ∈ X,
• anti-symmetric: x ≤ y and y ≤ x imply x = y for all x, y ∈ X,
• transitive: x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ X.

A good example of a partial order is (PS,⊆), the set of all subsets of a set S with the set-containment
relation. Note that there can exist x, y ∈ X such that neither x ≤ y nor y ≤ x hold.

For a poset (X,≤), a chain is a subset C ⊆ X such that x, y ∈ C implies either x ≤ y or y ≤ x. chain

For S ⊆ X, an upper bound is u ∈ X such that s ≤ x for all s ∈ X. Similarly, lower bound. upper bound

lower boundNote that the upper/lower bounds of a subset need not be elements of the subset.
A maximal element of X is an m ∈ X such that m ≤ x implies m = x for all x ∈ X. Note maximal element

that X can have multiple maximal elements, so that distinct ones are necessarily non-comparable
with each other.

(Note: upper bounds of S do not need to be in S, only in X. Maximal elements need not be
unique.)

(E.g., consider the set X of linearly independent subsets of Rn, ordered by containment. The
maximal elements of X are precisely the bases.)

Theorem (Zorn’s Lemma). Let X be a non-empty poset. If every non-empty chain in X has an
upper bound, then X has a maximal element.

I’m not going to prove it (it’s really a statement about set theory, which relies essentially on the
Axiom of Choice)1.

Remark. Here is another, equivalent formulation of Zorn’s lemma, which you often see.

Let X be a poset. If every chain in X has an upper bound, then X has a maximal
element.

Note that C = ∅ is a always a chain in X, and that any u ∈ X is an upper bound of C. Applied to
non-empty X, the above statement is clearly equivalent to our statement of Zorn’s lemma. When
X is empty, the above statement is vacuously true, since in that case the empty chain is the only
chain, and it has no upper bound, so the hypothesis is not satisfied.

In practice, when checking “this chain has an upper bound”, the case of the empty chain often
works out differently than non-empty chains, so it can be more useful to use a formulation of Zorn’s
lemma which excludes the case of empty chains.

1See https://faculty.math.illinois.edu/~dan/ShortProofs/Zorn.pdf for a short proof.

https://faculty.math.illinois.edu/~dan/ShortProofs/Zorn.pdf
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18. Proof of the maximal ideal theorem

Now we apply this to the existence of maximal ideals.

Proof of the maximal ideal theorem. Let I ⊆ R be a proper ideal. Let X be the set of all proper
ideals of R which contain I.

We have X 6= ∅ since I ∈ X.
Consider a chain C ⊆ X with C 6= ∅; we want to show that C has an upper bound. Let

J =
⋃
A∈C A. I claim that J is a proper ideal of R.

J is an ideal. Since C is non-empty, so is J .
If a, b ∈ J , there exist A,B ∈ C such that a ∈ A and b ∈ B. Since C is a chain, either A ⊆ B

or B ⊆ A, so a ± b ∈ J . If a ∈ J and r ∈ R, then there exists A ∈ C such that a ∈ A, and thus
ra, ar ∈ A ⊆ J .
J is a proper subset. If not, then 1 ∈ J , but then 1 ∈ A for some A ∈ C, whence A = R,

contradicting the hypothesis that X consists of proper ideals.
Thus, J ∈ X, so is an upper bound of the chain.
Zorn’s lemma applies to show that X has a maximal element M . �

19. Rings of fractions

Note: I’m going to do things a little more generally than DF§7.5. (Because it is important.) The
more general construction is in DF§15.4.

Let R be a commutative ring with 1. Let D ⊆ R be a multiplicatively closed subset, i.e., a multiplicatively closed
subsetsubset such that

(1) 1 ∈ D, and
(2) a, b ∈ D implies ab ∈ D.

Example. Consider the set D := Rr {0} of non-zero elements in R. We have

(1) 1 ∈ D iff 1 6= 0, and
(2) a, b ∈ D implies ab ∈ D iff ab = 0 implies a = 0 or b = 0.

Thus, D = Rr {0} is multiplicatively closed iff R is an integral domain.

Given such a pair (R,D), let J be the subset

J := { r ∈ R | ∃d ∈ D, dr = 0 },
i.e., the elements of R which are “killed” by some element of D. Note that J = {0} if and only if
all elements of D are non-zerodivisors. The following exercise describes the two key properties of
the subset J .

Exercise. Show that J is an ideal of R. Then show that J has the following property: for any d ∈ D
and r ∈ R, we have that dr ∈ J implies r ∈ J .

We will construct a new ring D−1R, called a ring of fractions together with a ring homomorphism ring of fractions

ψ : R→ D−1R which preserves identity. The idea is that elements of D−1R are going to be formal
quotients “r/d”, where r ∈ R and d ∈ D. The ring homomorphism ψ : R→ D−1R sends r to “r/1”.
The kernel of the homomorphism is the ideal J . In particular, when D has no zerodivisors, you can
identify R with the subring ψ(R) of D−1R. This is the special case described in DF§7.5.

The ring D−1R will have the following properties.

Proposition. Let R be a commutative ring with 1 and D ⊆ R a multiplicatively closed subset.

(1) If d ∈ D then ψ(d) is a unit in D−1R.
(2) Every element of D−1R can be written ψ(r)ψ(d)−1 for some r ∈ R, d ∈ D.
(3) Kerψ = J = { r ∈ R | ∃ d ∈ D, dr = 0 }.

Thus ψ identifies R/J with the subring ψ(R) ⊆ D−1R.
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I will construct the fraction ring and prove this soon.

Example (Fraction fields). For R an integral domain, let D = Rr {0} and define

Q = Frac(R) := D−1R.

Since R is an integral domain, (3) implies that Kerψ = {0}, so ψ is injective. It is convenient to
identify R with its image in Q under ψ. Then every element of Q has the form ab−1, where a, b ∈ R
and b 6= 0. In particular, Q is a field, since (ab−1)(ba−1) = 1 when both a 6= 0 and b 6= 0.

We call Q = Frac(R) the field of fractions of R. field of fractions

For instance, Q ≈ Frac(Z).

20. Construction of rings of fractions

Define an relation ∼ on the set R×D = { (r, d) | r ∈ R, d ∈ D }, by

(r1, d1) ∼ (r2, d2) ⇐⇒ ∃d ∈ D, d(r1d2 − r2d1) = 0.

That is, (r1, d1) ∼ (r2, d2) iff r1d2 − r2d1 ∈ J . Note: this is almost the familiar criterion for equality
of fractions r1

d1
= r2

d2
, except that in general we can only require a congruence modulo J .

Remark. If all elements of D are non-zero divisors, then the condition for “(r1, d1) ∼ (r2, d1)”
simplifies to “r1d2 − r2d1 = 0”. This special case is the construction described in DF§7.5.

Lemma. The relation ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are immediate. For transitivity: if r1d2 − r2d1, r2d3 − r3d2 ∈ J ,
then

d3(r1d2 − r2d1) + d1(r2d3 − r3d2) ∈ J,
since J is an ideal. But this expression reduces to

d3(r1d2 − r2d1) + d1(r2d3 − r3d2) = r1d2d3 − r2d1d3 + r2d1d3 − r3d1d2 = d2(r1d3 − r3d1)
so d2(r1d3 − r3d1) ∈ J . But J has the property (see Exercise above) that dx ∈ J implies x ∈ J
whenever d ∈ D, so we conclude that r1d3 − r3d1 ∈ J . �

Let’s write “[r/d]” for the equivalence class of (r, d), and let D−1R be the set of such equivalence
classes. We define operations

[r1/d1] + [r2/d2] := [(r1d2 + r2d1)/d1d2],

[r1/d1] · [r2/d2] := [r1r2/d1d2].

Lemma. These operations are well-defined, and give D−1R the structure of a commutative ring
with identity, with

0D−1R = [0/1], 1D−1R = [1/1], −[r/d] = [−r/d].

Furthermore, the function ψ : R→ D−1R defined by ψ(r) := [r/1] is a ring homomorphism which
preserves identity.

Proof. This is a straightforward (but lengthy) exercise. I’ll just show here that the operations are
well-defined.

Suppose [r1/d1] = [r′1/d
′
1] and [r2/d2] = [r′2/d

′
2], i.e., that r1d

′
1 − r′1d1, r2d′2 − r′2d2 ∈ J . Then

verify that

(r1d2 + r2d1)d
′
1d
′
2 − (r′1d

′
2r
′
2d
′
1)d1d2 = (r1d

′
1 − r′1d1)d2d′2 + (r2d

′
2 − r′2d2)d1d′1 ∈ J,

and
r1r2d

′
1d
′
2 − r′1r′2d1d2 = (r1d

′
1 − r′1d1)r2d′2 + (r2d

′
2 − r′2d2)r′1d1 ∈ J,
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and so [(r1d2 + r2d1)/d1d2] = [(r′1d
′
2 + r′2d

′
1)/d

′
1d
′
2] and [r1r2/d1d2] = [r′1r

′
2/d
′
1d
′
2]. It remains to

verify the axioms for a commutative ring with 1, and that ψ is a ring homomorphism, but this is
straightforward. �

Now I’ll prove the properties I promised.

Proof.

(1) d ∈ D implies ψ(d) ∈ D−1R is a unit. Clear, since [d/1][1/d] = [d/d] = [1/1] = 1.
(2) All elements of D−1R can be written as ψ(r)ψ(d)−1 for some r ∈ R, d ∈ D. Clear, since

[r/d] = [r/1][1/d] = [r/1][d/1]−1.
(3) Kerψ = J . By construction [r/1] = [0/1] iff r1− 01 = r is in J .

�

21. Examples of rings of fractions

We have seen that if R is an integral domain, then Frac(R) := (Rr {0})−1R is the fraction field
of R. We note the fraction field of a polynomial ring over a field:

F (x1, . . . , xn) := Frac(F [x1, . . . , xn]),

called the field of rational functions. field of rational func-
tionsHere is the easiest example where ψ : R→ D−1R is not injective

Example (Inverting 0 is deadly). If D ⊆ R is a multiplicatively closed subset with 0 ∈ D, then
Kerψ = R, so D−1R = {0} is the trivial ring.

Example (Inverting nilpotent elements is deadly). Suppose there exists a ∈ D such that an = 0 for
some n ≥ 1. Then Kerψ = R, so D−1R = {0} is the trivial ring.

Notation: if a ∈ R and D = { an | n ≥ 1 }, we typically write a−1R for D−1R.

Example (Laurent polynomials). Let R = commutative ring with 1. Let D = {xk | k ∈ Z≥0 } ⊆ R[x].
We have

R[x, x−1] := D−1R[x] = x−1R[x].

This can be identified with the set of finite formal sums
∑

k∈Z akx
k, with ak ∈ F , and ak = 0 for all

but finitely many k ∈ Z.

Example (Local rings). Let P ⊆ R be a prime ideal (of a commutative ring with 1). Then D := RrP
satisfies 1 ∈ D and a, b ∈ D implies ab ∈ D. Thus we can form the localization localization

RP := (Rr P )−1R

of R at P .
For example, if p is a prime number, then

Z(p) = { a/b ∈ Q | a, b ∈ Z, p - b }.

22. Universal property of rings of fractions

There is a recipe for constructing ring homomorphisms out of a ring of fractions. W 5 Oct

Proposition. Let φ : R→ S be a ring homomorphism between commutative rings preserving 1. If
φ(D) ⊆ S×, then there there exists a unique ring homomorphism φ : D−1R→ S such that φ ◦ψ = φ.

R
φ
//

ψ
��

S

D−1R
φ

∃!
<<
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In other words, for every ring S with 1 there is a bijection{
ring homomorphisms

φ : D−1R→ S

}
←→

 ring homomorphisms
φ : R→ S

such that φ(D) ⊆ S×


by φ 7→ φ ◦ ψ.

Proof. Suppose given φ : R→ S such that φ(D) ⊆ S×. For existence, define φ([r/d]) := φ(r)φ(d)−1.
We need to check that this is well-defined, i.e., if [r1/d1] = [r2/d2] then φ(r1)φ(d1)−1 = φ(r2)φ(d2)−1.
There exists d ∈ D such that dr1d2 = dr2d1, so φ(d)φ(r1)φ(d2) = φ(d)φ(r2)φ(d1). Since φ(d) is a
unit we can cancel it, so φ(r1)φ(d2) = φ(r2)φ(d1). Then

φ(r1)φ(d1)
−1 = φ(r1)φ(d2)φ(d2)

−1φ(d1)
−1 = φ(r2)φ(d1)φ(d2)

−1φ(d1)
−1 = φ(r2)φ(d2)

−1

as desired.
For uniqueness, since every element x ∈ D−1R has the form x = ψ(r)ψ(d)−1 for some r ∈ R and

d ∈ D, the hypothesis on φ implies that φ(x) = φ(r)φ(d)−1. �

Proposition. Suppose F is a field and R ⊆ F is a non-trivial subring with 1F ∈ R. Then R is an
integral domain, and the fraction field Q = Frac(R) of R is isomorphic to the smallest subfield of F
containing R.

Proof. It is clear that R is a commuative ring with 1, and has cancellation since F does.
Let φ : R� F be the inclusion homomorphism. Since φ is injective, every non-zero element of R

is sent to a unit in F , so φ extends (uniquely) to a homomorphism φ : Q→ F (preserving 1). Since
Q is a field and φ 6= 0, φ is injective, so we get an isomorphism Q ≈ φ(Q).

It remains to show that if F ′ ⊆ F is a subfield containing R, then φ(Q) ⊆ F ′, but this is clear
from the fact that elements of φ(Q) have the form φ(r)φ(d)−1 = rd−1 for r, d ∈ R, d 6= 0. �

Exercise. Let R = R1 × R2 be a product of two commutative rings with 1. Let e1 = (1, 0), e2 =
(0, 1) ∈ R. Show that

e−11 R ≈ R1, e−12 R ≈ R2.

23. Prime fields

Let R be a ring with identity. Then the map φ : Z→ R defined by φ(1 + · · ·+ 1) = 1 + · · ·+ 1 is
a ring homomorphism, which preserves 1. The kernel of φ is an ideal of Z. I usually won’t notate
this map: in a ring R, the symbol “n” means “1 + · · ·+ 1”, but note that it could be the case that
n = 0 in R, even if n 6= 0 in Z.

If F is a field, then the kernel of Z→ F must be a prime ideal. Let (p) be the kernel, where p is
either a prime integer or 0. Then Z/(p) ≈ φ(Z) ⊆ F , is a subdomain of F .

• If p > 0, then Z/(p) is a finite set, and is thus a field, denoted Fp.
• If p = 0, then Z/(0) ≈ Z, and therefore Q ≈ Frac(Z) ⊆ F .

The fields Fp for p prime and Q are called prime fields. Every field contains a unique prime prime fields

subfield.
The characteristic of F is the non-negative integer p such that Ker(Z → F ) = (p). So any characteristic

field containing a copy of Fp has “characteristic p”, while any field containing a copy of Q has
“charactersitic 0”.
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24. Chinese Remainder Theorem

Here rings are commutative with 1.
Recall that if R1, . . . , Rn are rings, we can define the product ring R1 × · · · ×Rn.
If A,B ⊆ R are ideals, then there is a homomorphism (preserving 1),

φ : R→ R/A×R/B, φ(r) = (r +A, r +B).

The kernel of φ is A ∩B.
Question: when is this an isomorphism?
If A,B ⊆ R are ideals, let

A+B := { a+ b | a ∈ A, b ∈ B } ⊆ R
and

AB := { a1b1 + · · ·+ akbk | ai ∈ A, bi ∈ B, k ≥ 0 }.
Then both A+B and AB are ideals in R (exercise).

Exercise. If A = (a1, . . . , am) and B = (b1, . . . , bn), then A+B = (a1, . . . , am, b1, . . . , bn) and (if R
is commutative AB = (a1b1, . . . , ambn) = (aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n).

Say that ideals A and B are comaximal if A+B = R. (Some people call this “coprime”, but comaximal

DFs term is better.) Since the unit ideal is the only one which contains 1, we have that A and B are
comaximal iff 1 = a+ b for some a ∈ A and b ∈ B. Note that comaximal does not imply maximal.

Example. (a), (b) ⊆ Z are comaximal if and only if a, b are relatively prime, in the usual sense (no
common divisors greater than 1).

To see this, observe that (a) + (b) = Z if and only if there exist m,n ∈ Z such that ma+ nb = 1.
It is standard that a, b are relatively prime iff there exist m,n ∈ Z such that 1 = ma+ nb (proof
given below).

Proof. Note that since ideals in Z are additive subgroups, all ideals in Z are principal. Thus
(a) + (b) = (c) for some c ≥ 0.

Since a, b ∈ (c), we see that c is a common divisor of a, b. If d is any common divisor of a, b,
we must have d | c as well since c = ma + nb for some m,n ∈ Z. Thus c = gcd(a, b) (or is 0 if
a = b = 0). So (a) + (b) = Z iff a, b are relatively prime.

Proposition. If A,B are comaximal ideals in R, then AB = A∩B, and φ induces an isomorphism
R/(AB)→ R/A×R/B.

Proof. In general, AB ⊆ A ∩ B. Conversely, if x ∈ A ∩ B, then using 1 = a + b, we have
x = ax+ xb ∈ AB, whence AB = A ∩B.

If (r1, r2) ∈ R/A × R/B, let r1, r2 ∈ R such that rk ∈ rk. Then using 1 = a + b consider
r = r2a+ r1b. The image of r in R/A is equal to that of r1, and the image in R/B is equal to that
of r2. Thus φ : R→ R/A×R/B is surjective, and the kernel is clearly A∩B, which we have shown
is the same as AB. �

Exercise. This theorem has a converse. If R is a commutative ring, and we have a ring isomorphism
R ≈ S × T , show that there are ideals A,B ⊆ R which are comaximal, such that R/A ≈ S and
R/B ≈ T .

We can generalize:

Proposition. If A1, . . . , An are pairwise comaximal, then A1 · · ·An = A1 ∩ · · · ∩ An, and
R/A1 · · ·An → (R/A1)× · · · × (R/An) is an isomorphism.

Proof. We prove this by induction on n, noting that the cases of n = 1, 2 are already done.
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Let A = A1 and B = A2 · · ·An. I claim that A + B = R. Since A1 + Ak = R for k = 2, . . . , n,
there exist xk ∈ A1 and ak ∈ Ak such that xk + ak = 1. Thus

1 = (a2 + x2)(a3 + x3) · · · (ak + xk) = (a2 · · · ak) + (a2 · · · ak) + x2(stuff) + · · ·+ xk(stuff) ∈ B +A.

Thus, we have an isomorphism of rings R/AB ≈ R/A×R/B, and thus

R/A1 · · ·An ≈ R/A1 ×R/A2 · · ·An ≈ R/A1 ×R/A2 · · ·An ≈ R/A1 ×R/A2 × · · · ×R/An
by induction. �

Thus, if a1, . . . , an are integers which are pairwise relatively prime, and a = a1 · · · an, then
Z/(a) ≈ Z/(a1)× · · · ×Z/(an). In particular, if n = pe11 · · · perr is a factorization into distinct primes,
we have

Z/(n) ≈ Z/(pe1)× · · · × Z/(per).

Since this is also an isomorphism of additive groups, this gives the primary decomposition of finite
cyclic groups which we described earlier.

25. Euclidean domains

Many of the most familiar integral domains have a “Euclidean algorithm” of some sort. Such
domains are called Euclidean domains.

A Euclidean domain is an integral domain R such that there exists a function N : Rr{0} → Z≥0 Euclidean domain

such that

• for any a, b ∈ R with b 6= 0, there exist q, r ∈ R such that

a = qb+ r with either r = 0 or N(r) < N(b).

Note: This is not exactly the definition given in DF: they extend N to all of R by setting N(0) = 0.
However, the definition I have given is very common (it is the one on wikipedia, for instance). These
variations don’t make any essential difference in how this notion is used.

Note: the function N is not unique: there can be many such functions for any Euclidean domain.

Example. Here are some standard examples of Euclidean domains.

• Any field with N(a) = 1 for all a 6= 0.
• Z with N(a) = |a|.
• F [x] with N(f) = deg(f).

(This example explains why we don’t always want to define N(0).)

Exercise. A pair (R,N) consisting of an integral domain R and a function N → Rr {0} → Z≥0 is
a Euclidean domain iff for every non-trivial principal ideal 0 6= (b) ⊆ R, every non-trivial coset of
(b) contains a representative r such that N(r) < N(b).

Example (Gaussian integers are a Euclidean domain). Let O = Z[i] ⊆ C, the ring of Gaussian
integers. If you picture C as the plane, then the subset Z[i] is the “integer lattice” in the plane.

Define
N(a+ bi) := |a+ bi|2 = (a+ bi)(a− bi) = a2 + b2.

Note that N(αβ) = N(α)N(β).
Recall that Frac(Z[i]) = Q(i) ⊆ C. Given α = a+ bi and β = c+ di in Z[i] , we have

α

β
= r + si =

ac− bd
c2 + d2

+
ad+ bc

c2 + d2
i ∈ Q(i) ⊆ C, r =

ac− bd
c2 + d2

, s =
ad+ bc

c2 + d2
∈ Q.

This element α/β is, at most, a distance of 1/
√

2 from some element of Z[i], which are exactly the
points in the integer lattice inside C.

In fact, choose p, q ∈ Z such that |r − p|, |s− q| ≤ 1/2. Then

|(α/β)− (p+ qi)|2 = |r − p|2 + |s− q|2 ≤ 1/2,
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and thus
|α− (p+ qi)β|2 ≤ |β|2/2.

Therefore, setting γ = α− (p+ qi)β ∈ Z[i], we have

α = (p+ qi)β + γ, |γ|2 < |β|2.
Thus Z[i] is a Euclidean domain.

On the other hand, not every quadratic integer ring is a Euclidean domain, e.g., OQ(√−5) = Z[
√
−5],

as we will see. I’ll prove this indirectly, but note that the argument I gave for Z[i] doesn’t work

here: an element in C can as far as
√

3/2 > 1 from any element of Z[
√
−5].

26. Principal ideal domains

A principal ideal domain (or just PID) is a domain in which every ideal is principal. As we principal ideal domain

PIDhave already seen, Z is a PID, since ideals are additive subgroups, and all additive subgroups of Z
are cyclic groups.

Proposition. Every Euclidean domain is a PID.

Proof. Let I be a non-0 ideal in R. Let d ∈ I be a non-zero element of minimal norm. We claim
that I = (d). Clearly (d) ⊆ I.

If a ∈ I, the Euclidean property gives a = qd + r with either r = 0 or N(r) < N(d). If r = 0,
then a = qd ∈ (ad). If N(r) < N(d), then r = a− qd ∈ I, contadicting the minimality of N(a). �

Thus, we get some examples of PIDs: Any field, Z, F [x] for F a field, and Z[i].

Remark. There exist PIDs which are not Euclidean domains. For instance, OQ(√−19) (see Example

at end of DF§8.2).

In an integral domain R, a greatest common divisor (gcd) of a, b ∈ R with b 6= 0 is any greatest common divi-
sor (gcd)element d ∈ R such that (i) d divides both a and b, and (ii) if e divides both a and b, then e|d.

Note: Defined this way, the gcd is only unique up-to-units. For instance, in Z both 3 and −3 are
greatest common divisors of the pair 6, 15.

Note: a in general a gcd might not exist. We will give an example below.

Proposition. In a PID, the greatest common divisor d of a and b always exists, and (d) = (a, b) =
(a) + (b).

Proof. In a PID, (a, b) is a principal ideal, so there is d such that (a, b) = (d). Clearly a, b ∈ (d), so
d is a common divisor, while if a, b ∈ (e) for some e, then (d) = (a, b) ⊆ (e). �

Note: If the PID is actually a Euclidean domain, then the Euclidean algorithm can be used to
compute gcds.

Proposition. In a PID, every non-zero prime ideal is a maximal ideal.

Proof. Let (0) 6= (p) ( R be a prime ideal. I will show that if (p) ⊆ (a) ⊆ R for some a ∈ R, then
either (a) = (p) or (a) = R.

If (p) ⊆ (a) then p = ab for some b ∈ R. If a ∈ (p) then (a) = (p) so we are done, so suppose
a /∈ (p). Then since (p) is a prime ideal, ab = p ∈ (p) and a /∈ (p) imply b ∈ (p), so b = cp for some
c ∈ R. Thus

p = ab = acp ⇒ 1 = ac,

so 1 = ac ∈ (a) whence (a) = R. �
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27. A quadratic integer ring which is not a PID

Most integral domains are not PIDs. For instance, neither Z[x] or F [x, y] (F = field) are PIDs, F 7 Oct
as we have seen.

In fact, not all quadratic integer rings are PIDs.

Example (OQ(√−5) is not a PID). Let O = OQ(√−5) = Z[
√
−5] = { a+ b

√
−5 | a, b ∈ Z } ⊂ C. Let

I = (3, 2 +
√
−5). I claim that I is not principal, so O is not a PID (and therefore not a Euclidean

domain). To do this, I’m going to need the function

N : O → Z≥0, N(a+ b
√
−5) := (a+ b

√
−5)(a− b

√
−5) = a2 + 5b2, a, b ∈ Z,

and the properties:

N(α) = 0 ⇐⇒ α = 0, N(αβ) = N(α)N(β).

(Note: this will not be a Euclidean function.)
Claim. I 6= O. If 1 ∈ I = (3, 2 +

√
−5), then there exist α, β ∈ O such that

1 = 3α+ (2 +
√
−5)β.

Note that (2 +
√
−5)(2−

√
−5) = 9. Thus multiplying the above by 2−

√
−5 gives

2−
√
−5 = 3(2−

√
−5)α+ 9β = (2−

√
−5)α+ 3β),

and thus 2−
√
−5 ∈ (3). But this is not possible, because principal ideals in O which are generated

by integers have a very simple form: (3) = { 3a+ 3b
√
−5 | a, b ∈ Z }.

Claim. N(α) = 1 iff α = ±1. This is because the only integer solutions for a2 + 5b2 = 1 are
a = ±1, b = 0. This means that O× = {±1}.

Now suppose I is a principal ideal, i.e., suppose I = (3, 2 +
√
−5) = (a+ b

√
−5), for some a, b ∈ Z.

Then 3 = (a+ b
√
−5)α and 2 +

√
−5 = (a+ b

√
−5)β for some α, β ∈ R. Thus,

9 = N(3) = N(a+ b
√
−5)N(α) = (a2 + 5b2)N(α),

9 = N(2 +
√
−5) = N(a+ b

√
−5)N(β) = (a2 + 5b2)N(β).

We have a, b ∈ Z and a2 + 5b2 divides 9, and the only possibilities are a2 + 5b2 ∈ {1, 3, 9}.
• If a2 + 5b2 = 1, the only integer solutions are a = ±1 and b = 0, and so I = R, which we

have already disallowed.
• There are no integer solutions to a2 + 5b2 = 3.
• If a2 + 5b2 = 9, then N(α) = N(β) = 1, whence α, β ∈ {±1}. Thus a+ b

√
−5 = both ±3

and ±(2 +
√
−5), which is not possible.

Therefore, I is not principal.

Example (Elements without a gcd). Let O = Z[
√
−5], and consider the elements

6, 2 + 2
√
−5.

I claim these have no gcd in O. To show this I’ll just find all the common divisors.
If a+ b

√
−5 is any common divisor, then there are α, β ∈ O such that

6 = α(a+ b
√
−5), 2 + 2

√
−5 = β(a+ b

√
−5).

Taking norm gives
36 = N(α)(a2 + 5b2), 24 = N(β)(a2 + 5b2).

Therefore a2 + 5b2 is a common divisor of 24, 36 in Z, i.e.,

a2 + 5b2 ∈ {1, 2, 3, 4, 6, 12}.
We can easily find all possible solutions with a, b ∈ Z, which turn out to all be common divisors:

±1, ±2, ±2± 2
√
−5.
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None of these can be the gcd, because none of these elements is divisible in O by both 2 and
2 +
√
−5.

28. Irreducible elements

Let R be a domain. We can classify elements of R into exactly one of the following types.

• Zero. Just 0.
• Units. Elements which have a multiplicative inverse.
• Reducible elements. r ∈ R which is not 0 or a unit, such that r = ab for some a, b which are

not 0 or units.
• Irreducible elements. r ∈ R which are not 0 or a unit or reducible.

We say a, b ∈ R are associate (or same up to units if there exists a unit u ∈ R× such that associate

same up to unitsb = ua. Being associate is an equivalence relation on R (exercise).
We say that a | b iff (a) ⊆ (b). Equivalently, iff there is c ∈ R such that b = ac.

Proposition. Let a, b ∈ R a domain. TFAE.

(1) a and b are associate.
(2) a | b and b | a.
(3) (a) = (b).

Proof. Straightforward. �

So when we talk about elements up to units, we are really talking about principal ideals.

Example. For R = F a field, we have

• 0.
• F× = F r {0}.
• Irreducible elements = none.
• Reducible elements = none.

Example. For R = Z, we have

• 0.
• Z× = {±1}.
• Irreducible elements = {±p | p ∈ N is a prime number }.
• Reducible elements = composite integers (positive and negative).

Example. For R = F [x] with F a field, we have

• 0.
• (F [x])× = F×, the non-zero constant polynomials.
• Irreducible elements = irreducible polynomials, i.e., polynomials f which cannot be written

as a product of polynomials of strictly smaller degree.
• Reducible elements = polynomials of degree ≥ 1 which do factor as a product of polynomials

of strictly smaller degree.

Example. For R = C[x], we have

• 0.
• (C[x])× = C×.
• Irreducible elements = { ax+ b | a, b ∈ C, a 6= 0 }.
• Reducible elements =everything else.

Example. For R = R[x], we have

• 0.
• (R[x])× = R×.
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• Irreducible elements = { ax+ b | a, b ∈ R, a 6= 0 }∪{ ax2 + bx+ c | a, b, c ∈ R, a 6= 0, b2 < 4ac }.
• Reducible elements = everything else.

Sketch proof: use that (i) f ∈ R[x]rR factors as a product of degree 1 factors in C[x] (“fundamental
theorem of algebra”), (ii) all non-real complex roots of a real polynomial come in conjugate pairs,
so if λ ∈ Cr R is a root of f ∈ R[x], then

g = (x− λ)(x− λ) = x2 − 2 Re(λ)x+ |λ|2 ∈ R[x]

divides f , so f = gh for some h ∈ R[x] with deg h < deg f .

Gaussian integers.
The notion of irreducibility is related to (but not the same as) that of maximal ideal.

Lemma. Let p ∈ R which is not zero and not a unit. Then p ∈ R is irreducible iff for all a ∈ R,
(p) ( (a) implies (a) = R. That is, p is irreducible iff (p) is maximal among proper principal ideals.

Proof. If p is irreducible and (p) ( (a), then p = ab for some b ∈ R not a unit. Thus a is a unit since
p is irreducible, so (a) = R. On the other hand, if p is a unit then (p) = R, and if p is reducible,
then p = ab for non-units a, b whence (p) ( (a) ( R. �

Thus if R is a PID, p ∈ R is irreducible iff p 6= 0 and (p) is a maximal ideal.

Corollary. If p, q are irreducible elements in a domain, then p|q iff p and q are the same up to
units.

Proof. It is clear that associate elements divide each other. Conversely, if q ∈ (p), then (q) ⊆ (p) ( R;
since q is irreducible, we can only have (q) = (p). �

29. Prime elements

In a domain R, an element p ∈ R is prime iff p 6= 0 and (p) is a prime ideal. That is, iff p is prime element

non-zero and not a unit, and if p | ab implies either p | a or p | b.

Remark. If p ∈ R with p 6= 0, then p is prime iff R/(p) is an integral domain.

Proposition. In any domain, prime elements are irreducible.

Proof. Let p be prime, and suppose (p) ( (a) for some a. Then a /∈ (p), while p = ab for some
b ∈ R. Since p is prime, b ∈ (p), so b = pr for some r ∈ R, whence

p = ab = apr =⇒ 1 = ar,

whence a is a unit. �

It is not the case that irreducibles are always prime.

Example. In R = Z[
√
−5], the element 3 is irreducible but not prime. Irreducibility: if 3 = αβ, then

9 = N(α)N(β), whence either α or β is a unit, since there is no element of norm 3. Not prime:
because (2 +

√
−5)(2−

√
−5) = 32 ∈ (3).

Remark. Recall that a prime number is a positive integer p such that p 6= 1 and the only positive
divisors of p are 1 and p. This is basically the same as saying p is a positive irreducible element. It
is not the same statement as saying p is a prime element, in the above sense.

This can be a real point of confusion.
It turns out that the primes (in the above sense) in Z are the same as the irreducibles: If p ∈ Z

is irreducible, its only factors are {±1,±p}, so if p | ab but p - a, then gcd(p, a) = 1, so there are
m,n ∈ Z such that 1 = mp+ na, so b = mpb+ n(ab) is divisible by p.

In fact, this proof works in any PID.

Proposition. In a PID, prime and irreducible are equivalent.
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Proof. I have shown that in general prime implies irreducible, so I only need to show that irreducibles
are prime in a PID. We know that a non-zero p is irreducible if and only if (p) is maximal among
proper principal ideals. In a PID, all ideals are principal, so this says (p) is a maximal ideal, and
therefore is also a prime ideal, so p is a prime element.

Here is a more elementary proof that irreducibles are prime in a PID R. Let p be irreducible, and
suppose ab ∈ (p). I need to show that a /∈ (p) implies b ∈ (p). The ideal (p, a) must be principal
(since we are in a PID), so (p, a) = (r) for some r. Then p = rs for some s. If s is a unit, then
(p, a) = (r) = (p), and thus a ∈ (p), contradicting the hypothesis. Since p is irreducible, it follows
that since s is not a unit, r is a unit. Thus (p, a) = R, whence

1 = pu+ av

for some u, v ∈ R. Multiplying by b gives

b = bpu+ bav ∈ (p)

since ab ∈ (p). �

30. Unique factorization domains

A Unique factorization domain (UFD) is a domain such that every non-zero non-unit r ∈ R Unique factorization
domainsatisfies

(1) r = p1 · · · pn for some irreducibles p1, . . . , pn ∈ R, n ≥ 1, and
(2) this decomposition is unique up to associates, i.e., if r = p1 · · · pn = q1 · · · qm for irreducibles

pi, qj , then m = n and there is a permutation σ ∈ Sn such that qk = ukpσ(k) for some unit
uk.

Note: in a UFD, prime and irreducible are equivalent. Prime always implies irreducible, whereas
if p is irreducible and ab ∈ (p), then ab = pr, so p must appear (up to associate) in the irreducible
factorization of either a or b, whence either a or b is in (p).

We will soon prove that any PID is a UFD, which when applied to Z proves the “Fundamental
theorem of arithmetic”. On the other hand, Z[

√
−5] is not a UFD, since 32 = (2 +

√
−5)(2−

√
−5).

Theorem. Every PID is a UFD.

31. PIDs are UFDs: Existence of factorizations

I’m going to do this as a consequence of a more general fact. M 10 Oct
Let R be an integral domain. Say that R has the ascending chain condition (acc) for

principal ideals if for any collection {Ik}k∈Z>0 of principal ideals in R such that ascending chain condi-
tion (acc) for principal
idealsI1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there exists n such that Ik = In for all n ≥ k.

Lemma. Every PID has the acc for principal ideals.

Proof. Let {Ik}k≥1 be a countable chain of principal ideals, so I = (ak) for some ak ∈ R. Let
J :=

⋃∞
k=1 Ik. Then J is an ideal. (The things you have to check involve only a finite number of

elements of J , and these will always be in some Ik.)
Since R is a PID, then J = (b) for some b. But then b ∈ In for some n, whence J = In and so

Ik = In if k ≥ n. �

Warning: in general, a union of ideals is not an ideal (e.g., 2Z∪ 3Z is not an ideal). A union of a
chain of ideals is an ideal however.

Proposition. Let R be a integral domain. If R has the acc for principal ideals, then every non-zero
non-unit in R is equal to a finite product of irreducible elements.
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Proof of existence of irreducible factorization. Let R be an integral domain with the acc for principal
ideals. Say a ∈ R is bad if it is a non-zero non-unit which cannot be writen as a product of finitely
many irreducibles. We want to show R has no bad elements. Clearly, an irreducible element is not
bad, since it is a product of one irreducible.

Note that if a, b are not bad, then ab is also not bad. Thus, if a is bad, it must be reducible
and for any factorization a = bc at least one of b or c is bad. Thus, for bad a we can always write
a = a′b with a′ also bad and b a non-unit.

Using this observation, we can produce an infinite chain of factorizations of a bad element a, of
the form

a = a1b1 = a2b2b1 = a3b3b2b1 = · · · ,
where in each step we factor the bad element ak−1 as ak−1 = akbk with ak bad and bk a non-unit.
This gives us a strictly ascending chain of principal ideals.

(a) ( (a1) ( (a2) ( · · · .
But this is impossible, since R has the acc for principal ideals. �

32. PIDs are UFDs: Uniqueness of factorizations

Proposition. Let R be a integral domain. If all irreducible elements in R are prime elements, then
factorization in irreducibles (when it exists) is unique up to units and reordering.

The proof of this part is exactly the same as the proof in the case R = Z, which you have probably
seen before.

Proof. If a non-zero non-unit r has an irreducible factorization, it has one of shortest length, say
r = p1 · · · pn. We will show that this is the only irreducible factorization up to equivalence, by
induction on n.

If n = 1, and r = p1 = q1 · · · qm are two irreducible factorizations, then q1 · · · qm ∈ (p1); since p1
is irreducible, and so prime by hypothesis, some qk ∈ (p1), whence p1 and qk are associate, and thus
q1 · · · q̂k · · · qm is a unit, so this cannot happen unless m = 1.

More generally, if r = p1 · · · pn = q1 · · · qm are irreducible factorizations with n ≤ m, then since
q1 · · · qm ∈ (pn), we have that pn is be associate to some qk, whence p1 · · · pn−1 = uq1 · · · q̂k . . . qm
for some unit u. By induction, n− 1 = m− 1, and the remaining qis are associate to the remaining
pjs. �

33. Factorization in the Gaussian integers

Let O = Z[i]. We are going to identify all the irreducible elements in O, up to associates. By
what we have proved, this is a PID, and thus a UFD.

Recall the norm function N : O → Z defined by N(a+bi) = a2 +b2 if a, b ∈ Z. The norm function
actually takes only non-negative values, and is multiplicative: N(αβ) = N(α)N(β).

We have already shown that α ∈ O is a unit iff N(α) = 1. From this it is easy to see that

O× = {±1,±i},
by solving the equation a2 + b2 = 1 in Z.

Next we want to determine the irreducible=prime elements of O, up to associates.
Here is a criterion for finding some irreducible elements in O.

Lemma. Let α ∈ O. If N(α) ∈ Z is a prime number, then α is irreducible in O.

Proof. If α = β1β2 for some β,β2 ∈ O, then N(α) = N(β1)N(β2) with N(β1), N(β2) ∈ Z. If N(α)
is prime, then one of N(β1), N(β2) is 1, so one of β1, β2 is a unit in O. �

E.g., N(2 + i) = N(2− i) = 5, so 2 + i and 2− i are primes in O.
Note that Z is a subring of O (with 1).
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Proposition. If R is a commutative ring with 1, and S ⊆ R is a subring (with 1), and P ⊆ R is a
prime ideal of R, then S ∩ P is a prime ideal of S.

Proof. If a, b ∈ S such that ab ∈ S ∩ P , then ab ∈ P , so either a ∈ S ∩ P or b ∈ S ∩ P since P is a
prime ideal. �

Note: in this case we say that the prime ideal P in R “lies over” the prime ideal S ∩ P in S.
As a conseqquence, an irreducible element in O divides exactly one “rational prime” in Z.

Proposition. Let p ∈ Z be a prime number, and let α ∈ O be an irreducible element. TFAE.

(1) α is an irreducible divisor of p in O.
(2) pZ = (α) ∩ Z, i.e., (α) lies over pZ.

Proof. Since α is irreducible in O, the ideal (α) is maximal among proper principal ideals in O.
Since O is a PID, this means that (α) is a maximal ideal, and so prime.

Therefore (α) ∩ Z = qZ for some prime number q.
(1) =⇒ (2). If α divides p, then p ∈ (α) ∩ Z = qZ and thus p = q.
(2) =⇒ (1). If q = p, then p ∈ (α) and thus p = αβ for some β ∈ O, i.e., α is a divisor of p. �

Now we classify irreducibles in O which lie over a given rational prime p. Suppose α ∈ O is
irreducible with (α) ∩ Z = pZ with p a prime integer. We have p = αβ for some β ∈ O. Taking
norms gives

p2 = N(p) = N(α)N(β).

Since α is not a unit, there are two cases:

• N(α) = p2, N(β) = 1, whence β is a unit and thus p and α are associate, so α ∈ {±p, ±pi}.
• N(α) = p, N(β) = p, so both α and β are irreducible, and p = αβ is an irreducible

factorization of p. Thus these are the only two irreducible divisors up to associates, by
uniqueness of irreducible factorization.

Conclusion: If p is a prime number, then an element α = a+ bi ∈ O, a, b ∈ Z, is an irreducible
divisor of p iff one of the following mutually exclusive cases occurs:

(1) α = ±p or α = ±pi, or
(2) a2 + b2 = p.

In case (1) there is only one irreducible divisor, up to associates. In case (2) there are at most two
irreducible divisors up to associates (depending on whether α = a+ bi and β = a− bi are associtate).

In particular, understanding how p factors in O amounts to knowing whether the equation
a2 + b2 = 1 has solutions in Z. If it does not, we are in case (1), while if it does we are in case (2).

Examples:

• Up to associates, 1 + i is the only prime over 2, since 1− i = −i(1 + i).
• 3 is the only prime over 3 (since N(a+ bi) = a2 + b2 = 3 has no integer solutions).
• 2 + i and 2− i are non-associate primes which lie over 5.

Note that α = a+ bi and α = a− bi are associate iff (a) b = 0, (b) a = 0, (c) a = b, or (d) a = −b.
If α is also irreducbile, this can only happen when a, b ∈ {±1}. Thus 2 is the only prime number
with two irreducible factors which are associate.

34. Fermat’s theorem on sums of squares

Lemma (Lagrange). Let p be a prime number of the form p = 4m+ 1, with m ∈ Z. There exists W 12 Oct
n ∈ Z such that p | (n2 + 1).

Proof. This is really a statement about the field Z/p: if p is a prime congruent to 1 mod p, then
Z/p contains a square root of −1. This is left as a (non-obvious) exercise. (It will also be proved
later on.) �
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Theorem (Fermat). A rational prime p is a sum of two squares iff p = 2 or p ≡ 1 mod 4.

Proof. The case of p = 2 is clear, so suppose p is odd.
If an odd p is a sum of squares, it is easy to show that p ≡ 1 mod 4, because squares of integers

are congruent to either 0 or 1 mod 4.
Conversely, if p ≡ 1 mod 4, we have shown p | n2 + 1 for some n. Thus, in the Gaussian integers

O we have p | (n+ i)(n− i). If p is a prime element of O, then p must divide either n+ i or n− i
in O, but this is clearly not possible, since p(a+ bi) = (pa) + (pb)i. Thus p is not prime in O, and
therefore p is reducible in O. (This is because irreducible elements must be prime in a PID like O.)
The claim follows, since we have shown that if p is reducible in O then p = (a+ bi)(a− bi) = a2 + b2

for some a, b ∈ Z. �

This gives an essentially complete understanding of irreducible elements in Z[i].

Corollary. A positive integer n has the form n = a2 +b2 for some a, b ∈ Z iff its prime factorization
(in Z) n = pk11 · · · pkrr , (primes pi pairwise distinct) is such that: if pi ≡ −1 (mod 4), then ki is
even.

Proof. It is immediate that the the set of S integers which are a sum of two squares is precisely
the image of the norm function N : Z[i] r {0} → Z. Since N is multiplicative, the subset S is
multiplicatively closed.

Let T ⊆ Z be the subset described in the statement of the Corollary. Note that T is also
multiplicatively closed. We want to show S = T .

For any prime p we have p2 ∈ S, and by Fermat’s theorem we have p ∈ S if p 6≡ −1 (mod 4).
Since S is multiplicatively closed we see that T ⊆ S.

We show m = a2 + b2 ∈ S implies m ∈ T by induction on m. The statement is clearly true for
m = 1, 2, which are both in S and T . Given m ∈ S with m ≥ 3, either

• m has no prime factors in Z which are ≡ −1 (mod 4), whence m ∈ T , or
• some prime p | m with p ≡ −1 (mod 4). In this case we will show that p2 | m, whence
m′ = m/p2 ∈ S and thus m′ ∈ T by induction, and therefore m = m′p2 ∈ T since p2 ∈ T .

Since m = a2 + b2, we have that

(a+ bi)(a− bi) = pβ for some β ∈ Z[i].

But p is irreducible=prime in Z[i] by Fermat, so either p | a+ bi or p | a− bi (divisibility in Z[i]).
WLOG suppose a+ bi = p(c+ di) for some c, d ∈ Z, whence a− bi = p(c− di), so

m = (a+ bi)(a− bi) = p(c+ di)p(c− di) = p2(c2 + d2).

�

Thus, the integers ≤ 50 which are not a sum of two squares are:

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48.

On the other hand, we have

1 = 12 + 02, 9 = 32 + 02, 18 = 32 + 32, 32 = 42 + 42, 41 = 52 + 42,

2 = 12 + 12, 10 = 32 + 12, 20 = 42 + 22, 34 = 52 + 32, 45 = 62 + 32,

4 = 22 + 02, 13 = 32 + 22, 25 = 52 + 02, 36 = 62 + 02, 49 = 72 + 02,

5 = 22 + 12, 16 = 42 + 02, 26 = 52 + 12, 37 = 62 + 12, 50 = 72 + 12.

8 = 22 + 22, 17 = 42 + 12, 29 = 52 + 22, 40 = 62 + 22,
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35. GCDs in UFDs

Recall that for a, b ∈ R in an integral domain, we say a | b iff there exists c ∈ R such that b = ac.
We have a | b iff b ∈ (a) iff (b) ⊆ (a).

Given a finite set {a1, . . . , an} of elements in an integral domain R, say that d ∈ R is a greatest
common divisor of {a1, . . . , an} if greatest common divi-

sor
(1) d | ak for k = 1, . . . , n, and
(2) if e | ak for k = 1, . . . , n, then e | d.

As we have seen, GCDs can fail to exist: e.g., there is no GCD for {6, 2 + 2
√
−5} in Z[

√
−5].

Proposition. Let {a1, . . . , an} be a finite subset of R. Then d ∈ R is a GCD of the set iff

(1) (a1, . . . , an) ⊆ (d), and
(2) if (a1, . . . , an) ⊆ (e) for some e ∈ R, then (d) ⊆ (e).

Proof. Immediate. �

Thus, d is a GCD of {a1, . . . , an} iff (d) is the “smallest principal ideal containing a1, . . . , an”.
This immediately implies that GCDs exist in PIDs: (d) = (a1, . . . , an). Note that this “formula”

fails in general, even if a GCD exists.

Example. In R = Z[x], the element 1 is a GCD of {2, x}, but (2, x) 6= (1).
We have already shown that I = (2, x) 6= R, and that I is not a principal ideal. It is straightforward

to show that R/I has only two elements, so if I ( (f) then (f) = R.

Exercise. If every pair a1, a2 ∈ R of elements in R has a GCD, then every finite subset of R has a
GCD.

Proposition. If R is a UFD, then every finite subset of R has a GCD.

Proof. This is the proof you imagine. Given {a1, . . . , an}, factor each ak into irreducibles. It is
convenient to choose a fixed representative p for associate classs of prime elements, so that we
get ak = uk

∏
p p

mp,k , with uk ∈ R×, mp,k ≥ 0, and mp,k = 0 for all but finitely many p. Then

d =
∏
p p

np with np = min(mk,p, k = 1, . . . , n) is a GCD. �

Finally, we have the following “cancellation formula” for GCDs in a UFD, which will be needed
later.

Proposition. Let R be a UFD, {a1, . . . , an} a finite set of elements in R, and d, c ∈ R with c 6= 0.
Then d is a GCD of {a1, . . . , an}, if and only if dc is a GCD of {a1c, . . . , anc}.

Proof. This is straightforward using irreducible factorizations. �

We say a subset {a1, . . . , an} is relatively prime if 1 is a GCD. If d is a GCD of a subset relatively prime

{a1, . . . , an} of a UFD, then {a1/d, . . . , an/d} is a relatively prime subset.
Warning. This is not the same as “pairwise relatively prime”, which is the hypothesis we saw in

the Chinese Remainder Theorem.

Fractions in lowest terms. Let F = Frac(R) be the fraction field of R. If R is a UFD, then we
can always write elements of F as fractions in “lowest terms” in an essentially unique way.

Proposition. If c ∈ F r {0}, then we can write c = a/b for a, b ∈ R with {a, b} relatively prime.
Furthermore, any two such expressions c = a/b = a′/b′ differ by a unit: i.e., there exist u′ ∈ R×
such that a′ = ua and b′ = ub.

Proof. Existence: straightforward using unique factorization in R. Given c, write c = a/b for some
a, b ∈ R, factor numerator and denominator into irreducibles. If an irreducible p divides both a and
b, replace with a/p and b/p, until you cannot proceed any further.
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Uniqueness: If c = a/b = a′/b′ in lowest terms, then ab′ = a′b. If an irreducible p divides a, it
must divide a′b and therefore a′. �

Example. In R = Z[
√
−5] (not a UFD), we have 1+

√
−5

2 = 3
1−
√
−5 . These are both in “lowest terms”,

but they are not “same-up-to-units”.

36. Polynomial rings over UFDs

We are going to prove the following theorem.

Theorem. If R is a UFD, then R[x] is a UFD.

This immediately generalizes to polynomials in several variables.

Corollary. If R is a UFD, then R[x1, . . . , xn] is a UFD for any n ≥ 1.

We are actually going to do more: we will give a kind of classification of irreducibles in R[x], and
a kind of algorithm for factoring in R[x]. This will involve the following diagram of subrings:

R // //
��

��

R[x]
��

��

F // // F [x]

In particular, any element of R[x] is also an element of F [x]. Note that R× = (R[x])× and
F× = (F [x])×.

(It may be helpful to think about the special case R = Z and F = Q.)
The basic idea of the proof is to factor elements of R[x] into a product of two types of elements:

scalars and primitives, and then to prove unique factorization separately for each type.
The following example gives an idea of how things will work.

Example. Let’s consider S = Z[x], and the element f = 60x3 + 30x2 − 140x− 70. Its irreducible
factorization in S is

f = (10)(6x3 + 3x2 − 14x− 7) = (2)(5) (2x+ 1)(3x2 − 7).

I did this in two steps. Step 1. Factor out the scalar 10, which was the GCD of the coefficients
of f . The other factor g = 6x3 + 3x2 − 14− 7 is a polynomial whose coefficients form a relatively
prime set, called a “primitive” polynomial. Step 2. Factor 10 into prime integers, and factor g into
irreducible polynomials, which are also primitive.

We will prove that to show the primitive polynomials 2x+ 1 and 3x2 − 7 are irreducible in Z[x],
it suffices to show that they are irreducible in Q[x].

Unique factorization for constant polynomials. For a domain S, we write Irred(S) ⊂ S for
the subset of irreducible elements.

Regarding R as a subring of R[x], we have the following fact.

Proposition. If f, g, h ∈ R[x] are such that f = gh, then f ∈ Rr {0} iff g, h ∈ Rr {0}.

Proof. Use the equation deg f = deg g + deg h. �

This implies that an element f ∈ R ⊆ R[x] is a unit/irreducible/reducible in R[x] iff it is a
unit/irreducible/reducible in R, and if reducible it only factors into a product of elements of R.
Thus, Irred(R) = R ∩ Irred(R[x]), and the factorizations of an element of R into irreducibles in R
are the same as factorizations of it into irreducibles in R[x].
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37. Primitive polynomials over UFDs

Let f =
∑n

k=0 ckx
k ∈ R[x]. We say that f is primitive if the set of its coefficients is relatively primitive

prime. That is, if 1 is a GCD for {c0, . . . , cn}.
I’m going to write Prim(R[x]) for the set of primitive polynomials in R[x].

Example. A monic polynomial is f =
∑n

k=0 ckx
k with cn = 1. Monic polynomials in R]x] are monic

always primitive.

Example. A degree 0 polyomial f = a0 is primitive iff it is a unit in R[x]. Thus R∩Prim(R[x]) = R×.

The first observation is that we can always factor polynomials into a product (scalar) × (primitive),
and this is unique up to units in R.

Proposition. Let f ∈ R[x] with f 6= 0. Then there exist a ∈ R and g ∈ Prim(R[x]) such that

f = ag.

Furthermore, this factorization is unique up-to-units in R. That is, if

f = ag = a′g′, a, a′ ∈ R, g, g′ ∈ Prim(R[x]),

then there exists u ∈ R× such that a′ = ua, g′ = u−1g.

Proof. Consider non-zero f =
∑n

k=0 ckx
k, ck ∈ R. Let a be a GCD of {c0, . . . , cn}. Then ck = adk

for some dk ∈ R, and we can define g =
∑n

k=0 dkx
k. Thus f = ag, and g is primitive since

{d0, . . . , dn} has GCD 1.
Conversely, if f = ag is any factorization with a ∈ R and g ∈ Prim(R[x]), the same argument

shows that a is a GCD of the coefficients of g. Since GCDs are unique up to units, the claim
follows. �

We can extend this to elements of F [x].

Proposition. Let f ∈ F [x] with f 6= 0. Then there exist c ∈ F× and g ∈ Prim(R) such that f = cg,
and furthermore this factorization is unique up-to-units in R. That is, if

f = cg = c′g′ ∈ F [x], c, c′ ∈ F, g, g′ ∈ Prim(R[x]),

then there exists u ∈ R× such that c′ = uc and g′ = u−1g.

Proof. For existence, write f =
∑n

k=0(ck/dk)x
k with ck, dk ∈ R, and let d = d0 · · · dn ∈ R r {0}.

Then df ∈ R[x], and by the previous proposition we can write

df = ag, a ∈ R, g ∈ Prim(R).

So f = cg with c = a/d ∈ F .
For uniqueness, suppose f = cg = c′g′ with c, c′ ∈ F , g, g′ ∈ Prim(R[x]). Then g′ = (c/c′)g.

Write c/c′ = a/b for some a, b ∈ R, so
bg′ = ag.

This writes an element of R[x] as a product of a scalar (a, b) and a primitive (g, g′) in two ways, so
by the previous proposition there exist u ∈ R× such that b = ua, g′ = u−1g, and so c′ = uc. �

Example. In Q[x], we have
1

2
x3 − 1

3
x+

1

4
=

1

12
(6x3 − 8x+ 3).
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38. Gauss lemma

Here is the key statement. F 14 Oct

Proposition (Gauss lemma). The product of two primitive polynomials is primitive.

Proof. Let
f = a0 + · · ·+ amx

m, g = b0 + · · ·+ bmx
n, ai, bj ∈ R.

WLOG assume am, bn ∈ Rr {0}. Then

fg = c0 + c1x+ c2x
2 + · · ·+ cm+n−1x

m+n−1 + cm+nx
m+n

= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·

(am−1bn + ambn−1)x
m+n−1 + (ambn)xm+n.

We want to show {c0, . . . , cm+n} is relatively prime.
We suppose p ∈ R is a prime element such that p | ck for all k, and derive a contradiction. Since

f and g are primitive, p cannot divide at least one of each of their coefficients. Let s be minimal
such that p - as, and t minimal such that p - bt. We have

cs+t = a0bs+t + · · ·+ as−1bt+1︸ ︷︷ ︸
p divides a0, . . . , as−1

+asbt + as+1bt−1 + · · ·+ as+tb0︸ ︷︷ ︸
p divides bt−1, . . . , b0

.

Therefore p | asbt, so p divides one of as or bt, a contradiction. �

Thus Prim(R[x]) is multiplicatively closed. In fact, we have a better property.

Proposition. Let f = gh ∈ R[x]. Then f ∈ Prim(R[x]) iff g, h ∈ Prim(R[x]).

Proof. We just need the other direction. Write g = ag′ and h = bh′, with a, b ∈ R and g′, h′ ∈
Prim(R[x]). Then f = (ab)(g′h′) is a decomposition into a scalar times a primitive, which is unique
up to units in R. Since f = 1f is another such, we see that ab is a unit and so a, b ∈ R×, and thus
g = ag′ and h = bh′ are primitive. �

Note: this is actually enough to prove that primitive polynomials have factorizations into
irreducible primitives, via induction on degree.

39. Proof that polynomials over a UFD is a UFD

Now we relate factorization in Prim(R[x]) to factorization in F [x]. The rule is: if a primitive
factors in F [x], you can adjust the factorization by a unit in R to get a factorization in Prim(R[x]).

Proposition. If
f = gh ∈ Prim(R[x]), g, h ∈ F [x],

then there exist

c ∈ F×, g′, h′ ∈ Prim(F [x]) such that g = c−1g′, h = ch′, f = g′h′.

Proof. By an earlier proposition, we can choose

b, c ∈ F, g1, h1 ∈ Prim(R[x]) such that g = bg1, h = ch1.

Then we have two factorizations
1f = (bc)(g1h1)

into scalar-times-primitive, so they are the same up to units in R. In particular u = bc ∈ R×. Set
g′ = ug1 and h′ = h1. Then both g′, h′ ∈ Prim(R), and g = c−1g′ and h = ch′ with c ∈ F×. �

Corollary. An f ∈ Prim(R[x]) is irreducible in R[x] iff it is irreducible in F [x].
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Corollary. A non-unit f ∈ Prim(R[x]) admits a factorization f = p1 · · · pr into primitive irreducibes
p1, . . . , pr, and this factorization is unique up to reordering and units.

Proof. Existence. Since non-unit primitives have degree ≥ 1, we can work by induction on degree.
If f is an irreducible primitive we are done. Otherwise f = gh for some g, h of degree strictly
between 0 and deg f . The elemnets g and h are necessarily primitive, whence g, h can be factored
into primitive irreducibles by induction.

(Alternate proof: factor f into irreducibles in F [x], and then “adjust” the factors by units in F
to get a product of primitives.)

Uniqueness. If f = p1 · · · pr = q1 · · · qs with pi, qj primitive irreducibes, then these are also
irreducible factorizations in F [x], so are the same up to reordering and units in F . In particular,
r = s, and by reordering we may assume qk = ckpk for some ck ∈ F×. But pk, qk are primitive, so
ck ∈ R×. �

We obtain the desired theorem.

Theorem. Let R be a UFD. Then R[x] is also a UFD.
Furthermore, every irreducible f ∈ R[x] is one of exactly two types.

(1) f ∈ R and irreducible in R.
(2) f ∈ Prim(R[x]) and irreducible in F [x].

Proof. We prove the second claim first. Every non-zero f ∈ R[x] can be written f = ag for some
a ∈ R and g ∈ Prim(R[x]). If f is irreducible then one of a or g is a unit in R×. If g is a unit then
f is irreducible in R, while if a is a unit then f is primitive and irreducible in F [x].

Now we show that F is a UFD. Let f ∈ R[x] be a non-zero element. Existence. f = ag for some
a ∈ R, g ∈ Prim(R[x]). We know that a = p1 · · · pr for some irreducibles pi ∈ R, and g = q1 · · · qs
for some primitive irreducibles qj ∈ Prim(R[x]).

Uniqueness. If f = p1 · · · prq1 · · · qs = p′1 · · · p′kq1 · · · q′` with pi, p
′
i irreducible in R, and qj , q

′
j

irreducible in Prim(R[x]), then we know there exists a u ∈ R× such that

p′1 · · · p′k = u(p1 · · · pr), q′1 · · · q′` = u−1(q1 · · · qs).
The result follows from unique factorization in R and unique factorization in Prim(R[x]). �

40. Irreducibility criteria for polynomials

Given f ∈ F [x] with F a field, when is f irreducible or reducible? How can we find factors of f?

Proposition. If f(x) ∈ F [x] and a ∈ F is such that f(a) = 0, then f = (x− a)g for some g ∈ F [x].

Proof. By the division algorithm applied to f ÷ (x− a), there exist g, r ∈ F [x] with

f = (x− a)g + r, deg r < deg(x− a) = 1.

Thus r ∈ F ⊆ F [x]. Apply evaluation at a, which is a ring homomorphism:

f(a) = eva
(
(x− a)g + r

)
= (a− a)g(a) + r(a) = r.

Since f(a) = 0, we have f = (x− a)g. �

Corollary. If f ∈ F [x] with deg(f) ∈ {2, 3}, then f is reducible iff it has a root in f .

Let f ∈ F [x]. Say that c ∈ F is a root of multiplicity m if m ∈ Z≥0 is the largest integer such root of multiplicity m

that (x− c)m | f in F [x].

Proposition. If f ∈ F [x] with deg f = n, then f has at most n roots in F , even if counted “up to
multiplicity”.

Proof. This is just a consequence of the fact that F [x] is a UFD. �
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Proposition. Suppose F is the fraction field of a UFD R, and consider a polynomial in R[x] of the
form

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ak ∈ R, deg f = n.

If c ∈ F is a root of f , and if c = r/s with r, s ∈ R is a fraction in lowest terms, then:

r | a0 and s | an.
In particular, if f is monic, then any roots of f in F are elements c ∈ R which divide a0.

Proof. We have

0 = f(r/s) = an(r/s)n + an−1(r/s)
n−1 + · · ·+ a1(r/s) + a0.

Multiply through by sn to get

0 = anr
n + an−1r

n−1s+ · · · a1rsn−1 + a0s
n.

an equation in R. Everything except the left-hand term is divisible by s in R, and since {r, s} is
relatively prime, we get s | an. Likewise, everything except the right-hand term is divisible by r in
R, so we get r | a0.

If an = 1, then s ∈ R× and so c = r/s ∈ R with c | a0. �

Example. The polynomial f = x3 − 3x− 1 ∈ Z[x] is irreducible in Q[x], since by the above the only
possible roots are ±1, but f(±1) 6= 0. Because f is monic and thus primitive, it is also irreducible
in Z[x].

Let I ⊆ R be an ideal. Then we can form the ring (R/I)[x] of polynomials over the quotient ring,
and we get a surjective ring homomorphism

R[x] � (R/I)[x],
∑

ckx
k 7→ π(ck)x

k,

which I will usually also call π. I’ll also write f := π(f) ∈ (R/I)[x].
Note: the kernel of this homomorphism is

(I)R[x] = I R[x] = {
∑

ckx
k ∈ R[x] | ck ∈ I },

the ideal in R[x] generated by I, so (R/I)[x] ≈ R[x]/IR[x].

Proposition. Let R be an integral domain, and I ( R a proper ideal. Let f ∈ R[x] be a monic
polynomial of positive degree. If its image f ∈ (R/I)[x] is irreducible in (R/I)[x], then f is irreducible
in R[x].

Proof. Note that since f is monic and I 6= R, we have f 6= 0, and in fact deg(f) = deg(f) > 0. In
particular, f is not a unit in (R/I)[x].

So to prove the claim, it suffices to show that f reducible implies f reducible.
Suppose f = gh ∈ R[x] with g and h non-units. Then we have f = gh ∈ (R/I)[x]. To show

f is reducible it suffices to show that both g, h are non-zero and non-units. It suffices to show
deg(g) = deg(g) and deg(h) = deg(h), since then both g, h will be non-constant.

This follows because since f is monic, the leading coefficients of g and h must be units, and so
project to non-zero elements in R/I since I 6= R. �

Example. Let R = Q[x] and I = (x). Consider f = x3 + y2 + 3x2y + 17xy + 1 ∈ R[y] = Q[x, y]. As
a polynomial with coefficients in Q[x] this is monic. Note that (R/I)[y] ≈ Q[y], and reducing mod
I amounts to setting x = 0, and gives f = y2 + 1, which is irreducible in Q[y], so f is irreducible.
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41. Eisenstein criterion

The Eisenstein criterion is sometimes handy for producing irreducible polynomials in Q[x]. It’s
not always applicable, but it is easy to use when it is.

Proposition (Eisenstein criterion). Let R be an integral domain with prime ideal P ⊆ R, and let
f = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x] be a monic polynomial over R. If a0, . . . , an−1 ∈ P and
a0 /∈ P 2, then f is irreducible in R[x].

Proof. Suppose f = gh with g, h non-units, whence deg g,deg h < deg f . We can project to the
quotient ring (R/P )[x], which is an integral domain since R/P is, because P is prime. In the
quotient we have

xn = f = gh.

This implies 0 = f = g(0)h(0), and thus g(0) = h(0) = 0, which means that g(0), h(0) ∈ P . Thus
a0 = g(0)h(0) ∈ P 2, contradicting the hypothesis. (In fact, we must have g = bxk, h = cxn−k with
b, c ∈ (R/P )× and 0 < k < n.) �

The following example will be important for us.

Example (The cyclotomic polynomial Φp). Let R = Z and P = (p) for some prime p. Then if
f = anx

n + · · · + a0 is a monic polynomial in Z[x] such that p | ak for all k = 0, . . . , n − 1, and
p - a0, then f is irreducible.

For instance, consider Φp(x) =
∑p−1

k=0 x
k ∈ Z[x]. This is a factor of

xp − 1 = (x− 1)Φp(x),

so roots of Φp in C are λ ∈ C such that λp = 1 but λ 6= 1.
Let

f(x) = Φp(x+ 1) =

p−1∑
k=0

(
p

k + 1

)
xk = xp + pxp−1 + · · ·+ p(p− 1)

2
x+ p.

This has the Eisenstein property for p, so f is irreducible in Z[x], and thus in Q[x]. Therefore Φp(x)
is also irreducible, since if Φp(x) = g(x)h(x) then f(x) = g(x+ 1)h(x+ 1) would be reducible.

(Note: this argument uses the fact that the function Q[x]→ Q[x] defined by f(x) 7→ f(x+ 1) is
an isomorphism of rings, and thus takes irreducible elements to irreducible elements.)y

42. Finite subgroups of units in a field

Proposition. Let F be a field, and G ≤ F× a finite subgroup of its abelian group of units. Then M 17 Oct
G is a cyclic group.

Example. In C×, for every n there is a unique cyclic subgroup of n, generated by ζ := e2πi/n. (You
can also take ζk as a generator for this subgroup if k is relatively prime to n.)

Example. If F is a finite field, then F× is a cyclic group. In particular, F×p = (Z/p)× is a cyclic
group of order p− 1.

For instance, (Z/7)× is cyclic of order 6, and in fact (Z/7)× = 〈[3]〉 = 〈[5]〉.

We need the following fact: for any n ≥ 1, the set { c ∈ F× | cn = 1 } has at most n distinct
elements. Proof: this set is precisely the roots of the polynomial f = xn − 1 ∈ F [x], which has
degree n. Then the claim is a consequence of the following.

Proposition. Let G be a finite abelian group such that, for every prime number p, there are at
most p elements g ∈ G such that gp = 1. Then G is cyclic.
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Proof. In this proof I’m going to write Gm := { gm | g ∈ G }. Because G is abelian, this subset is
always a subgroup.

I argue by induction on n = |G|. So let G be a non-trivial group satisfying the hypothesis. In
any non-trivial finite group there exists an element of G with order > 1, and hence (by taking an
appropriate power) we can choose an element c ∈ G with |c| = p for some prime p.

Because G is abelian, the function φ(x) := xp defines a surjective homomorphism of groups

φ : G� Gp ≤ G.
By hypothesis, Ker(φ) = {x ∈ G | xp = 1 } has at most p elements, and since it contains an element
c with order p, we have Ker(φ) = 〈c〉, a subgroup of order p. Thus the function φ is a “p-to-1”
surjective function: every a ∈ Gp has exactly p distinct “pth roots”, i.e., elements b ∈ G such that
bp = a. (The point is that each preimage φ−1(a) is a coset of Ker(φ) = 〈c〉.)

By the first isomorphism theorem, Gp ≈ G/Kerφ and so |Gp| = n/p < n. Since Gp is a subgroup
of G, it also satisfies the hypothesis of the proposition, so by induction is cyclic on some generator
we will call a ∈ Gp.

Since a ∈ Gp, there exists a b ∈ G such that bp = a. In fact, the set S := { b ∈ G | bp = φ(b) = a }
has size exactly p, since it is a coset of Ker(φ) = 〈c〉. That is, a has exactly p distinct “pth roots”
in G.

Claim. Any b ∈ S rGp is a cyclic generator of G. In fact, given a b ∈ GrGp with bp = a, we
have

Gp = 〈a〉 � 〈b〉 ≤ G,
and since |G : Gp| = p is prime, we must have G = 〈b〉.

So we are reduced to showing that S rGp is non-empty. In fact, I can show that at most one of
these pth roots b of a is in Gp. Clearly if S ∩Gp = ∅ we are done, since S is non-empty. So suppose
b ∈ Gp with bp = a. Then the restricted homomorphism

φ|Gp : Gp → Gp = 〈a〉
is surjective, and thus a bijection since both domain and codomain are finite sets of the same order.
Thus in this case there is exactly one b ∈ Gp with bp = a.

Therefore, there are either p or p− 1 distinct elements b ∈ GrGp such that bp = a, so there is
at least one, as desired. �

43. Noetherian rings

Let R be a commutative ring with 1. We say that R is Noetherian if it has the ascending chain Noetherian

condition for ideals. That is, if {Ik}k∈Z>0 is a sequence of ideals with Ik ⊆ Ik+1, then there exists
n > 0 such that Ik = In for all k ≥ n. (Note: this is similar to, but different than, the ascending
chain condition for principal ideals which we saw in the proof that a PID is a UFD.)

This is not the definition as given in the book, but it is equivalent to it.

Theorem. Let R be a commutative ring with 1. Then R has the acc for ideals iff every ideal in R
is finitely generated.

Proof. This is the same idea as something we saw earlier: a group has the acc for subgroups iff
every subgroup is finitely generated.

=⇒. I’ll prove the converse. If I ⊆ R is a non-finitely generated ideal, then we can choose a
sequence fk ∈ I, k ≥ 1, such that fk+1 /∈ Ik := (f1, . . . , fk) for all k. This given a strictly increasing
chain (f1) ( (f1, f2) ( · · · , which implies R does not have the acc for ideals.
⇐=. Suppose every ideal is finitely generated. Then for a chain I1 ⊆ I2 ⊆ · · · of ideals, let

J :=
⋃∞
k=1 Ik. This J is also an ideal, so by hypothesis J = (f1, . . . , fm) for some finite subset

{f1, . . . , fm}. But then there exists n such that f1, . . . , fm ∈ In, whence In = J . �

Clearly, any PID is Noetherian.
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44. Hilbert basis theorem

Theorem (Hilbert basis theorem). If R is a commutative ring with 1 which is Noetherian, then
R[x] is Notherian.

Corollary. If R is Noetherian, then R[x1, . . . , xn] is Noetherian.

In particular, all ideals in polynomial rings over fields are finitely generated.

Proof. Suppose I ⊆ R[x] is an ideal which is not finitely generated, and derive a contradiction. We
can choose a sequence of elements fk ∈ I, k ≥ 1, such that fk has minimal degree among elements
of I r (f1, . . . , fk−1). (That is, take f1 to be an element of minimal degree in I r (0), f2 an element
of minimal degree in I r (f1), etc.)

Write dk := deg fk ≥ 0, and note that dk ≤ dk+1 for all k. Write ak ∈ R r {0} for the leading
coefficient of the polynomial fk, so that

fk = akx
dk + (lower degree terms).

Consider the ideal J := (ak, k ≥ 1) ⊆ R generated by leading coefficients. Since R is Noetherian,
the chain of ideals

(a1) ⊆ (a1, a2) ⊆ (a1, a3, a3) ⊆ · · ·
must terminate, so there exists n such that an ∈ (a1, . . . , an−1), i.e.,

an = c1a1 + · · ·+ cn−1an−1, c1, . . . , cn−1 ∈ R.
Let

g := c1x
dn−d1f1 + · · ·+ cn−1x

dn−dn−1fn−1 =
n−1∑
k=1

ckx
dn−dkfk ∈ R[x]

Note that
xdn−dkfk = akx

dn + (lower degree terms), 1 ≤ k < n,

so that by construction g has the same leading term as fn, i.e., g = anx
dn + lower degree terms, and

also g ∈ (f1, . . . , fn−1). Thus h := fn − g ∈ I r (f1, . . . , fn−1), but deg(h) < deg(fn), contradicting
minimiality of deg(fn) in I r (f1, . . . , fn−1).

�

45. Modules

(DF 10.1, 10.2, 10.3)
Let R be a ring (not necessarily commutative, but with 1). A (left) R-module M is a triple (left) R-module

(M,+, ·) consisting of

(1) an abelian group (M,+), together with
(2) a function R×M →M (denoted (r,m) 7→ rm), satisfying

(a) (r1 + r2)m = r1m+ r2m,
(b) r(m1 +m2) = rm1 + rm2,
(c) r1(r2m) = (r1r2)m,
(d) 1m = m.

Note that:

• 0m = 0 for 0 ∈ R and m ∈M , since (0 + 0)m = 0m+ 0m = 0m by (a).
• (−1)m = −m, since 0m = (1 + (−1))m = 1m+ (−1)m.

Example. If F is a field, then an F -module is exactly the same thing as an F -vector space. A vector space

homomorphism of F -modules is exactly the same thing as an F -linear map between vector spaces.
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Example. An abelian group M admits a unique structure of a Z-module: the axioms imply that
nm = m+ · · ·+m︸ ︷︷ ︸

n times

and (−n)m = −(nm) if n ∈ Z>0. Thus Z-modules are the same thing as abelian

groups, and homomorphisms of Z-modules are the same things as abelian groups.

If you think of modules as a common generalization of abelian groups and vector spaces, then
you can predict most of the basic theory.

Example (Free module of rank n). For n ≥ 0, let Rn = { (a1, . . . , an) | ai ∈ R }. Then Rn is an
R-module, with componentwise addition and r(a1, . . . , an) := (ra1, . . . , ran). This is called a free
module of rank n. free module of rank n

In particular, we can take n = 1, so R is an R-module.

46. Submodules

A submodule of an R-module M is a subset N ⊆M such that (N,+) is a subgroup of (M,+), W 19 Oct
submoduleand r ∈ R and n ∈ N imply rn ∈ N .

Exercise. A subset N ⊆M is a submodule iff (i) (N,+) is a subgroup of (M,+) and (ii) for all
r ∈ R and n ∈ N , we have r · n ∈ N .

Example. A submodule of a Z-module is the same as a subgroup. For a field F , a submodule of an
F -module is the same as a vector subspace.

Example. Let V be a F [x]-module, thought of as an F -vector space equipped with a linear map
T : V → V corresponding to Tv = xv. Then W ⊆ V is a submodule if and only if it is a T -invariant
subspace of V .

Example. Consider R as a module over itself. Then a submodule of R is the same thing as a left
ideal.

47. Right modules

Let R be a ring (not necessarily commutative, but with 1). A right R-module M is right R-module

(1) an abelian group (M,+), together with
(2) a function M ×R→M (denoted (m, r) 7→ mr), satisfying

(a) m(r1 + r2) = mr1 +mr2,
(b) (m1 +m2)r = m1r +m2r,
(c) (mr1)r2 = m(r1r2),
(d) m = m1.

Consider a ring (R,+, µ), where for the moment we choose to write multiplication as a function
µ(a, b) = ab. Let µop : R×R→ R be the function µop(a, b) := µ(b, a). Then the triple (R,+, µop)
is also a ring, called the opposite ring, and usually denoted Rop. Note that its underlying abelian opposite ring

group is the same as that of R, but the multiplication is different.

Example. If R is commutative ring, then µ = µop, and thus R = Rop.

Exercise. For any ring, (Rop)op = R.

Let (M,+, λ) be a left R-module, where λ : R ×M → M is the action λ(r,m) := rm. Define
λop : M ×R→M by λop(m, r) = λ(m, r).

Proposition. The data (M,+, λ) is a left R-module iff (M,+, λop) is a right Rop-module.

Thus, left R-modules are the same thing as right Rop-modules.
In particular, if R is a commutative ring, then every left R-module can also be made into a right

R-module, via mr := rm.
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48. Module homomorphisms

An module homomorphism is a function φ : M →M ′ between left R-modules which satisfies module homomor-
phism

(1) φ(m1 +m2) = φ(m1) + φ(m2),
(2) φ(rm) = rφ(m).

It is an isomorphism if it is bijective, in which case the inverse map φ−1 : N → M is also an
isomorphism.

The objects Ker(φ) = {m ∈M | φ(m) = 0 } and φ(N) are submodules of M and N respectively.
We write HomR(M,N) for the set of (left) R-module homomorphisms.

Remark. We can also define homomorphisms of right R-modules, and we obtain a set Homright
R (M,N)

of homomorphisms of right R-modules.

We have the following, which are straightforward verifications.

(1) If φ, ψ ∈ HomR(M,N), then the function χ = φ+ ψ defined by (φ+ ψ)(m) = φ(m) + ψ(m)
is also an R-module homomorphism M → N . The + operation makes HomR(M,N) into an
abelian group.

(2) If φ ∈ HomR(M,N) and ψ ∈ HomR(L,M), then φ ◦ ψ ∈ HomR(L,M). We have

φ ◦ (ψ1 + ψ2) = φ ◦ ψ1 + φ ◦ ψ2, (φ1 + φ2) ◦ ψ = φ1 ◦ ψ + φ2 ◦ ψ.
(3) If M is a left R-module, then HomR(M,M), equipped with addition and with composition,

is ring with 1, called the endomorphism ring of M and denoted EndR(M). endomorphism ring

(4) If R is a commutative ring with 1, then for r ∈ R and φ ∈ HomR(M,N) the function
rφ : M → N defined by (rφ)(m) := rφ(m) is an R-module homomorphism. This operation
makes HomR(M,N) into an R-module.

Example. Consider φ ∈ HomR(Rm, Rn). If we write ui = (0, . . . , 1, . . . , 0) ∈ Rm and vi =
(0, . . . , 1, . . . , 0) ∈ Rn, then

φ(ui) = (ai1, . . . , ain) =
∑
j

aijvj

for some aij ∈ R. Then if x =
∑

i xiui ∈ Rm, we have

φ(x) =
∑
i

xiφ(ui) =
∑
i,j

xiaijvj = (
∑
i

xiai1, . . . ,
∑
i

xiain).

In other words, φ(x) = xA where x is thought of as a row vector in R and A = (aij) ∈Mm×n(R).
Conversely, given A = (aij) ∈Mm×n(R) we can use these formulas to define a homomorphism

ρA : Rm → Rn. In other words, there is an evident correspondence HomR(Rm, Rn) ≈Mm×n(R), so
that if we identify elements of Rm with 1×m row vectors x, then an m× n matrix A corresponds
to a homomorphism defined by x 7→ xA.

Furthermore, composition of linear maps corresponds to multiplication of matrices (but with a
change of order): ρA ◦ ρB = ρBA.

If we think about right modules and right module homomorphisms, then we can identity A ∈
Mm×n(R) with λA ∈ Homright

R (Rn, Rm) so that λA(x) = Ax, thinking of elements in Rn as column
vectors.

If R is commutative, right and left modules are the same thing, so we can use either formalism.
In particular, EndR(Rn) ≈Mn×n(R).

The automorphisms of a module AutR(M) ⊆ EndR(M) is the set of homomorphisms which are automorphisms

isomorphisms. This is the same thing as the group of units EndR(M)× in the endomorphism ring.
It is not an abelian group under addition, but it is a (usually non-abelian) group under composition.
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49. Quotient modules and isomorphism theorems

Let M be an R-module and N ⊆M a submodule. Then the quotient group M/N obtains the
structure of an R-module, via

r(m+N) := (rm) +N, r ∈ R, m ∈M.

This is the quotient module of M by N . There is a corresponding quotient homomorphism quotient module

quotient homomor-
phism

π : M →M/N .
We have a “homomorphism theorem” for modules.

Proposition. Let φ : M → N be a homomorphism of R-modules, and A ⊆ M a submodule. If
A ⊆ Ker(φ) then there exists a unique module homomorphism φ : M/A→ N such that φ(m+A) =
φ(m).

M
φ
//

π
����

S

M/A
φ

==

Theorem (First isomorphism theorem for modules). If φ : M → N is an R-module homomorphism,
then Ker(φ) is a submodule of M , φ(M) is a submodule of N , and we have an isomorphism
R/Ker(φ) ≈ φ(M) of R-modules.

That is, the homomorphism φ factors through an isomorphism φ : M/Ker(φ)
∼−→ φ(M).

M
φ

//

%% %%

N

M/Ker(φ)
φ

∼
// φ(M)

<<

<<

Theorem (Second (diamond) isomorphism theorem for modules). Let A,B ⊆M be submodules.

(1) A+B is a submodule of M .
(2) B is a submodule of A+B.
(3) A ∩B is a submodule of A.
(4) A/(A ∩B) ≈ (A+B)/B.

The isomorphism of (4) sends x+ (A ∩B) 7→ x+B.

Theorem (Third isomorphism theorem for modules). Let A,B ⊆M be submodules with A ⊆ B.
Then

(1) B/A is a submodule of M/A, and
(2) M/B ≈ (M/A)/(B/A).

The isomorphism of (2) sends x+B 7→ (x+A) + (B/A).

Theorem (Fourth (lattice) isomorphism theorem for modules). Let N ⊆M be a submodule. Then
we have inverse bijections

{ submodules A ⊆M | N ⊆ A } oo∼ // {submodules A ⊆M/N}

A � // A/N

π−1A A�oo
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where π−1A = {x ∈M | π(x) ∈ A }. Furthermore for submodules A,B ⊆M with N ⊆ A ∩B, we
have

(1) A ⊆ B iff A/N ⊆ B/N .
(2) (A ∩B)/N = (A/N) ∩ (B/N).

50. Finitely generated modules

Let A ⊆M be a subset of an R-module M . Let

RA = { r1a1 + · · ·+ rkak ∈M | ri ∈ R, ai ∈ A, k ≥ 0 }.
Then RA ⊆M is a submodule of M .

Proposition. We have that

RA =
⋂

submodule N ⊆M
A⊆N

N.

Thus, RA is the smallest submodule of M containing the set A.

If M = RA, we say that M is generated as a module by the set A. generated

Example. Let F be a field and V an F -module, i.e., an F -vector space. Then A ⊆ V generates V iff
it spans V in the sense of linear algebra.

Say M is a finitely generated module if it admits a finite generating set, and a cyclic if it finitely generated

cyclicadmits a generating set of size 1.

Example. Let R be a ring and I ⊆ R a left ideal. Then I ⊆ R is a submodule, and thus we can
form the quotient module R/I. The module R/I is cyclic: every element of R/I is of the form
r(1 + I) = r + I.

Proposition. If M is a cyclic R-module, then there is an isomorphism of R-modules M ≈ R/I for
some left ideal I ⊆ R.

Proof. Let {a} ⊆M be a singleton subset such that R{a} = M . Define φ : R→M by φ(r) := ra.
This is a surjective R-module homomorphism, and so by the 1st isomorphism theorem we get an
isomorphism φ : R/I →M where I = Ker(φ). �

51. Direct sum and product of modules

Let (Mi)i∈I be an indexed collection of R-modules.
The product (or direct product) of these is the module product

direct product∏
i∈I

Mi := { (xi)i∈I | xi ∈Mi },

where the operations are defined componentwise: (xi) + (yi) = (xi + yi) and r(xi) = (rxi).
The direct sum (or coproduct) of these is the submodule direct sum

coproduct⊕
i∈I

Mi := { (xi) ∈
∏
i

Mi | |{ i ∈ I | xi 6= 0 }| <∞},

consisting of tuples such that only finitely many entries are 0.
Note that if |I| <∞, then

⊕
i∈IMi =

∏
i∈IMi. In this case we usually write

M1 ⊕ · · · ⊕Mn = M1 × · · · ×Mn.

Proposition. Let N1, . . . , Nk ⊆M be submodules, and let N = N1 + · · ·+Nk ⊆ N . TFAE.

(1) The map φ : N1⊕ · · · ⊕Nk → N defined by φ(x1, . . . , xk) := x1 + · · ·+ xk is an isomorphism
of modules.
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(2) Nj ∩ (N1 + · · ·+Nj−1 +Nj+1 + · · ·+Nk) = 0 for all j = 1, . . . , k.
(3) Every x ∈ N can be written uniquely in the form x = x1 + · · ·+ xk with xj ∈ Nj.

In the above setting, we say that the submodule N is an internal direct sum of the submodules internal direct sum

N1, . . . , Nk.

52. Free modules

Let R be a ring with 1. A free R-module on a set S is a pair (M, e), consisting of an R-module F 21 Oct
free R-moduleM , and a function e : S →M (whose values I will write as es ∈M for s ∈ S), with the following

property: for every x ∈M , there exists a unique expression of the form

x =
∑
s∈S

ases, |{ s ∈ S | as 6= 0 }| <∞.

That is, for each x there exists a unique S-indexed tuple (as)s∈S of elements of R, only finitely
many of which are non-zero, making the above identity hold.

This is easier to discuss when S is finite. If S = {1, . . . , n}, then (M, e) is free if every x ∈M has
the form x =

∑n
k=1 ases for unique a1, . . . , an ∈ R.

Example. If S = {1, . . . , n}, let M := Rn and let ek := (δk1, . . . , δkn), where δij = 1 if i = j and
δij = 0 if i 6= j. Then this (M, e) is a free module on S.

Example. If S = ∅, then M = 0 is a free module on S.

Proposition. A free R-module exists for every set S.

Proof. First, suppose given a set S. Let

M :=
⊕
s∈S

R = { (as ∈ R)s∈S | |{ s ∈ S | as 6= 0 }| <∞}.

Write es ∈ M for the element (δst)t∈S ∈ M . Then it is immediate that (M, e) defines a free
module. �

A function e : S →M such that (M, e) is a free module on S is called a basis for M . A module basis

can have many different bases (or no bases, if it is not a free module).

Example. If V is a vector space over a field F , then a basis for V in this sense is exactly the same
as a basis of the vector space.

Exercise. With our definition, it is not in general the case that the basis elements are pairwise
distinct, i.e., that es 6= et when s 6= t. But there really is only one counterexample: the trivial ring
R = {0}. For the trivial ring there is only one module (up to isomorphism), namely the trivial
module M = {0}. In this case, M is free on every set S, via the function e : S →M with es = 0 for
all s.

If R is a ring with 1 6= 0, then for any free module (M, e) on a set S, we do have that s 6= t
implies es 6= et. Thus, as long as R is not the trivial ring, we can identify the basis of a free module
with the subset { es | s ∈ S } of basis elements.

Note: the defintion of free module is phrased slightly differently in DF §10.3, basically in order to
avoid this weird counterexample, so they can always regard the indexed collection {ei} as a subset
of the free module.)
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Universal property of free modules.

Proposition. Let (M, e) be a free R-module on some set S. Then for every R-module N and
function φ : S →M , there exists a unique R-module homomorphism φ : M → N such that φ ◦ e = φ.

S
φ
//

e
��

N

M
∃! φ

>>

That is, for any R-module N there is a bijection

HomR(M,N) oo //
{

functions φ : S → N
}

φ � // φ ◦ e

Proof. Given φ, define φ by

φ
(∑
s∈S

ases
)

:=
∑
s∈S

asφ(s).

This is an R-module homomorphism such that φ ◦ e = φ, homomorphism, and is the only one
sending es 7→ φ(s). �

Corollary. If M and N are both R-modules which are free on a set S then M and N are isomorphic.

Proof. Let (es)s∈S and (fs)s∈S be free bases for M and N respectively. By the universal property,
there exist homomorphisms φ : M → N and ψ : N →M such that φ(es) = fs and ψ(fs) = es. It is
clear that ψ ◦ φ = idM nad φ ◦ ψ = idN . �

53. Bilinear maps

Let M,N,A be abelian groups (= Z-modules). A bilinear function β : M×N → A is a function bilinear function

such that

(1) β(m1 +m2, n) = β(m1, n) + β(m2, n) for m1,m2 ∈M , n ∈ N , and
(2) β(m,n1 + n2) = β(m,n1) + β(m,n2) for m ∈M , n1, n2 ∈ N .

In other words, a function is bilinear iff it is bilinear separately in each variable. Note that this
implies that β(m, 0) = 0 = β(0, n).

Exercise. If β : M ×N → A is bilinear, then for any integer r we have

β(mr, n) = β(m, rn).

Example. Let M = Zm and N = Zn (free abelian groups), with free bases {u1, . . . , um} and
{v1, . . . , vn} respectively. Then it is easy to see that for any m× n-tuple (aij) of elements of some
abelian group A, we can define a bilinear function by

β : M ×N → A, β(
∑
i

xiui,
∑
j

yjvj) =
∑
i,j

xiyjaij .

Furthermore, this is the unique bilinear function such that β(ui, vj) = aij .

Example. Let M = Z/m and N = Z/n, with m,n ∈ Z>0, and consider a bilinear function
β : M ×N → A. For x, y ∈ Z we have

β([x]m, [y]n) = β(x[1]m, y[1]n) = xβ([1]m, y[1]n) = xy β([1]m, [1]n).

Write a := β([1]m, [1]n). Note that if d = my + xn for some d, x, y ∈ Z, then

β([m]m, [y]n) + β([x]m, [n]n) = (my)a+ (xn)a = da,
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but also
β([m]m, [y]n) = β([0]m, [y]n) = 0, β([x]n, [n]n) = β([x]n, [0]n) = 0,

and thus da = 0.
In particular, if gcd(m,n) = 1, the only bilinear function Z/m × Z/n → A is the constant

homomorphism 0. More generally, there is a bijective correspondence{
bilinear functions Z/m× Z/n→ A

}
↔
{
a ∈ A such that da = 0

}
,

where d = gcd(m,n).

Let R be a ring with 1 (but possibly non-commutative). Suppose a right R-module, N is a left
R-module, and A is an abelian group. Then an R-balanced bilinear function β : M ×N → A is R-balanced bilinear

functiona function is a bilinear function such that also

(3) β(mr, n) = β(m, rn) for m ∈M , n ∈ N , r ∈ R.

Note: if R = Z, then any bilinear map is already Z-balanced.
If R is commutative, then right and left modules are the same. In this case, if A is also an

R-module, that β : M ×N → A is R-bilinear, if R-bilinear

(3) β(mr, n) = β(m, rn) = r β(m,n) for m ∈M , n ∈ N , r ∈ R.

Exercise. Let M,N,A be modules over a commutative ring R, with submodules M ′ ⊆ M and
N ′ ⊆ N . Then there is a bijection between

(1) R-bilinear maps β : M/M ′ ×N/N ′ → A, and
(2) R-bilinear maps β : M ×N → A such that β(M,N ′) = 0 = β(M ′, N).

54. Tensor products

Let M be a right R-module and N be a left R-module. We define an abelian group M⊗RN , called
the tensor product of M and N over R, together with an bilinear map α : M ×N →M ⊗R N , as tensor product

follows.
Let Z[M ⊗N ] denote free abelian group on the set M ×N . We write [m,n] ∈ Z[M ×N ] for the

element in the free basis corresponding to (m,n) ∈M ×N . Let G ⊆ Z[M ×N ] be the subgroup
generated by all elements of the forms:

(1) [m1, n] + [m2, n]− [m1 +m2, n], for m1,m2 ∈M , n ∈ N ,
(2) [m,n1] + [m,n2]− [m,n1 + n2], for m ∈M , n1, n2 ∈ N .
(3) [mr, n]− [m, rn], for m ∈M , n ∈ N , r ∈ R.

We define
M ⊗R N := Z[M ×N ]/G.

Remark. If R = Z, then the subgroup generated by elements of types (1) and (2) automatically
contains those elements of type (3).

Write “m⊗ n” for the coset of [m,n] in M ⊗R N . Define

α : M ×N →M ⊗R N, α(m,n) := m⊗ n.
The function α is seen to be R-bilinear, by construction.

Proposition. The function α : M × N → M ⊗R N defined by (m,n) 7→ m ⊗ n is the universal
R-bilinear map out of M ×N . That is, for any abelian group A and R-bilinear map β : M ×N → A,
there exists a unique group homomorphism φ : M ⊗R N → A such that φ ◦ α = β.

M ×N
β

//

α
��

A

M ⊗N
∃! φ

;;
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In other words, there is a bijection{
group homomorphisms φ : M ⊗R N → A

}
oo //

{
R-balanced bilinear maps β : M ×N → A

}
φ � // φ ◦ α

Proof. By the property of free abelian groups,

{homomorphisms ψ : Z[M ×N ]→ A} ←→ {functions β : M ×N → A}.
Verify that ψ(G) = {0} if and only if β is R-bilinear. By the homomorphism theorem for abelian
groups, in this case there exists a unique homomorphism φ : M ⊗R N → A extending ψ. �

Remark. Because M ⊗R N is a quotient of the free abelian group on M × N , every element of
M ⊗R N can be written

r∑
k=1

mk ⊗ nk, mk ∈M, nk ∈ N, k ≥ 0.

An element which can be written as m⊗ n is sometimes called a simple tensor. It is rarely true
that all elements of the tensor product are simple tensors.

Remark. When R is commutative, we can assume both M and N are left R-modules (by equating
rm with mr). In this case, we can give M ⊗R N an R-module structure, by the formula

r
n∑
k=1

mk ⊗ nk =
n∑
k=1

rmk ⊗ nk =
∑
k=1

mk ⊗ rnk.

Exercise: verify that this is well-defined, and makes M ⊗R N into an R-module. Furthermore, for
any R-module A, there is a bijection{

R-module homomorphisms φ : M ⊗R N → A
}
oo //

{
R-bilinear maps β : M ×N → A

}
φ � // φ ◦ α

55. Computing tensor products

There is a lot to say about tensor products, but we don’t have a lot of time. However, here are
some simple recipes for computing tensor products of modules over a commutative ring R.

Proposition. If M and N are free R-modules on bases {u1, . . . , um} and {v1, . . . , vn} respectively,
then M ⊗R N is a free R-module on the basis {ui ⊗ vj}i=1,...,m, j=1,...,n.

Proof. Deduce this using the universal properties of tensor products and free modules: for any
m× n-tuple of elements (aij) in A, there is a unique R-bilinear map

β : M ×N → A, such that β(ui, vj) = aij .

Thus M ⊗R N is a free module on the subset {ui ⊗ vj}. �

Thus Rm ⊗R Rn ≈ Rmn.

Proposition. If M and N are R-modules, generated by subsets S and T respectively, and M ′ ⊆M
and N ′ ⊆ N are submodules generated by subsets U ⊆M ′ and V ⊆ N ′, then

M/M ′ ⊗R N/N ′ ≈ (M ⊗R N)/R{ s⊗ v, u⊗ t | s ∈ S, t ∈ T, u ∈ U, v ∈ V }.

Proof. First show that R-bilinear maps β : M/M ′×N/N ′ → A are in bijective correspondence with

R-bilinear maps β̃ : M ×N → A such that β̃(M ′, N) = 0 = β̃(M,N ′). Then note that β̃(M ′, N) = 0

iff β̃(S, V ) = 0, and β̃(M,N ′) = 0 iff β̃(T,U) = 0. �



LECTURE NOTES (PART 2), MATH 500 (FALL 2022) 44

Example. Suppose M = R/(a) and N = R/(b) are cyclic modules. Since R⊗R R is free of rank 1
with basis {1⊗ 1}, we find that

R/(a)⊗R R/(b) ≈ R⊗R R/R{a⊗ 1, 1⊗ b} ≈ R/(a, b).

56. Torsion modules

We are now going to talk about modules over integral domains.
Let R be an integral domain.
An element x ∈M in an R-module is torsion if there exists a non-zero r ∈ R such that rx = 0. torsion

We say a module M is torsion if Mtors = M and is torsionfree if Mtors = {0}. torsion

torsionfree

Lemma. The collection Mtors ⊆ M of torsion elements is a submodule. The quotient module
M/Mtors is torsionfree.

Proof. Clearly 0 ∈ Mtors. If x, y ∈ Mtors and r ∈ R, then there are a, b ∈ R r {0} such that
ax = 0 = by, whence (ab)(x+ y) = 0 with ab 6= 0 and a(rx) = 0 with a 6= 0.

If there exist x ∈ M/Mtors and a ∈ R r {0} such that ax = 0, then for any lift x ∈ M of x we
have ax ∈ Mtors, whence there exists b ∈ R r {0} such that bax = 0. Since ba 6= 0 we have that
x ∈Mtors, so x = 0. �

The following will often be useful.

Proposition. Given a submodule N ⊆M , the quotient module M/N is torsion iff for all x ∈M
there exists c ∈ Rr {0} such that cx ∈ N .

Proof. It’s enough to show that an element x ∈M/N is a torsion element iff for some x ∈M with
x = x+N , there exists c ∈ Rr {0} such that cx ∈ N . But this is immediate. �

Example. A cyclic module of the form R/I is torsion iff I 6= 0. If there exists a ∈ I r {0}, then for
any b ∈ R we have ab ∈ I, whence R/I is torsion by the previous proposition. Conversely, if I = 0
then R/I = R, and 1 ∈ R is certainly not a torsion element.

Example. If F is a field and V an F -vector space, then Vtors = {0}, so every vector space is
torsionfree, and V is a torsion module iff V = 0.

57. R-linear independence

Let R be an integral domain, and M an R-module. We are going to define a notion of “linear
dependence” which generalizes that for vector spaces.

Say that an indexed collection (xi ∈M)i∈I is R-linearly dependent (or just R-dependent) R-linearly dependent

R-dependentif there exists an indexed collection (ri ∈ R)i∈I with 0 < |{ i ∈ I | ri 6= 0 }| <∞ and
∑

i rixi = 0.
Otherwise the collection is R-linearly independent, or just R-independent. R-linearly independent

R-independentIn particular, (xi)i∈I is R-independent iff for all distinct i1, . . . , in ∈ I, we have that a1x1 + · · ·+
anxn = 0 with ak ∈ R implies ak = 0 for k = 1, . . . , n.

Note: elements of an R-independent collection (xi)i∈I are always pairwise distinct (using that
1 6= 0 in R). Thus in practice we often speak only of the R-independent subset {xi | i ∈ I } ⊆M .

Lemma. A subset S ⊆M is R-independent iff the submodule N = RS generated by S is free, with
S a free basis of N .

Proof. Immediate. �

Example. A module M with subset S ⊆M is free with basis S iff (i) S is R-independent and (ii)
M = RS.

Example. If M is a torsion module, then the only R-independent subset is the empty set.
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The collection of R-independent subsets S ⊆ M is ordered by ⊆. Say that an R-independent
subset S ⊆M is maximally R-independent if it is maximal with respect to this ordering, i.e., if maximally R-

independentwhenever S ⊆ T ⊆M with T an R-independent subset, then S = T .

Example. The basis of a free module is always maximally R-independent.
Warning: a maximally R-independent set need not be a basis, even if the module is free, and can

exist if the module is not free.

Here is a handy criterion for maximally independent sets.

Lemma. An R-independent subset S ⊆M is maximal iff M/N is a torsion module where N = RS.

Proof. Let y ∈M , with image y = y +N ∈M/N . Observe y is a torsion element in M/N if and
only if there exists

by = a1x1 + · · ·+ anxn, x1, . . . , xn ∈ S pairwise distinct, a1, . . . , an, b ∈ R, b 6= 0.

Thus y is torsion iff either y ∈ S or S ∪ {y} is R-dependent (since any R-dependence among
y, x1, . . . , xn must involve b 6= 0, since S is itself R-independent). So all y are torsion iff S is
maximally R-independent. �

Proposition. Every module over an integral domain admits a maximal R-independent set.

Proof. Let P be the collection of all R-independent subsets of M , ordered by the subset relation.
Note that

• P is non-empty, since ∅ ⊆M is R-independent.
• If C ⊆ P is a non-empty chain, then T :=

⋃
S∈C S is R-independent, since this is a condition

verified on finite subsets, all of which are a subset of some S ∈ C because C is a chain.

Thus we can apply Zorn’s lemma to P, giving a maximal R-independent set S. �

Corollary. Every vector space V over a field F has a basis.

Proof. There exists a maximally independent subset S ⊆ V , whence V/FS is torsion, so V/FS = 0
since F is a field and thus V = FS. �

58. Rank of modules over integral domains

Let R be an integral domain and M an R-module. We define an invariant of R-modules called M 24 Oct
the rank, which generalizes the notion of dimension of a vector space. However, unlike for vector
spaces, rank is not a complete isomorphism invariant. I will concentrate on the case of finite rank.

The rank of a module M over an integral domain is defined to be the largest size of any rank

R-independent subset.

Proposition (Interchange lemma). Let R be an integral domain, and M an R-module. Suppose we
have sequences of elements v1, . . . , vm, w1, . . . , wn in M such that

• v1, . . . , vm is R-independent, and
• M/R{w1, . . . , wn} is a torsion module.

Then

(1) m ≤ n, and
(2) after reordering w1, . . . , wn, we have that M/R{v1, . . . , vm, wm+1, . . . , wn} is a torsion mod-

ule.

Proof. We prove, by induction on k ∈ {0, . . . ,m}, that we have

(a) k ≤ n, and
(b) M/R{v1, . . . , vk, wk+1, . . . , wn} is torsion (after possibly reordering the wjs).



LECTURE NOTES (PART 2), MATH 500 (FALL 2022) 46

If k = 0 this is immediate.
Suppose the k case is true for some k ∈ {0, . . . ,m− 1}. By (b) there exists

bvk+1 = a1v1 + · · ·+ akvk + ak+1wk+1 + · · ·+ anwn, a1, . . . , an, b ∈ R, b 6= 0.

Since v1, . . . , vk+1 is R-independent, we must have k < n and at least one one of the ak+1, . . . , an
must be non-zero. Reorder wk+1, . . . , wn so that ak+1 6= 0. We thus have

ak+1wk+1 = a1v1 + · · ·+ akvk + (−b)vk+1 + ak+2wk+2 + · · ·+ anwn, ak+1 6= 0.

I claim that M/R{v1, . . . , vk+1, wk+2, . . . , wm} is torsion. Suppose x is an element of this quotient,
represented by some x ∈M . Then by (b) there exists

dx = c1v1 + · · ·+ ckvk + ck+1wk+1 + · · ·+ cnwn, c1, . . . , cn, d ∈ R, d 6= 0.

Then

ak+1dx = ak+1c1v1 + · · ·+ ak+1ckvk + ak+1ck+1wk+1︸ ︷︷ ︸+ak+1ck+2wk+2 + · · ·+ ak+1cnwn

= (ak+1c1 + ck+1a1)v1 + · · ·+ (ak+1ck + ck+1ak)vk

+ (−ck+1b)wk+1 + (ak+1ck+2 + ck+1ak+2)wk+2 + · · ·+ (ak+1cn + ck+1an)wn,

where we substitute in the previous expression for ak+1wk+1. Since ak+1d 6= 0, this implies x is a
torsion element. �

Proposition. Let S ⊆M be a finite subset of size n such that M/RS is torsion. Then there exists
a maximal R-independent subset of size m ≤ n, and every maximal R-indpendent subset of M has
size m.

Proof. By the interchange lemma applied with S = {w1, . . . , wn}, every finite R-independent subset
of M has size m ≤ n, whence there are no infinite R-independent subsets.

Now apply the interchange lemma to two maximal R-independent subsets {v1, . . . , vm} and
{w1, . . . , wn}, giving that m ≤ n for any pair of such subsets, and thus by symmetry that m = n. �

We call this m the rank of M . rank

59. Properties of rank of modules

Example. Every torsion module has rank 0.

Example. The free module Rn has rank n, since its basis is clearly an R-independent spanning set.
As a consequence, we get invariance of rank for finitely generated free modules over an integral
domain: if Rn ≈ Rm, then n = m.

Note: this can fail if R is not an integral domain.

Example. If F is a field and V an F -vector space which admits a finite spanning set of size m, then
it admits a basis of some size n ≤ m, and every basis has size n.

Finally, we can add ranks.

Proposition. Let R be an integral domain, M an R-module with N ⊆M a submodule. If N has
finite rank n, and M/N has finite rank m, then M has finite rank m+ n.

In particular, if A,B are modules of finite rank, then rank(A⊕B) = rankA+ rankB.

Proof. Pick maximal R-independent subsets y1, . . . , yn of N , and x1, . . . , xm of M/N . Choose
elements xk ∈ M such that xk + N = xk. I claim that x1, . . . , xm, y1, . . . , yn is a maximal R-
independent subset of M .
R-independence. Suppose

a1x1 + · · · amxm + b1y1 + · · · bnyn = 0, a1, . . . , am, b1, . . . , bn ∈ R.
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Then a1x1 + · · · + amxm = 0, whence all ai = 0 since the xi are R-independent in M/N . So
b1y1 + · · ·+ bnyn = 0, so all bj = 0 since the yj are R-independent in N .

Maximality. Suppose z ∈M , and let z = z +N ∈M/N . Then there exists

cz = a1x1 + · · ·+ amxm, a1, . . . , am, c ∈ R, c 6= 0.

Thus u := cz − (a1x1 + · · ·+ anxn) ∈ N , so there exists

du = b1y1 + · · ·+ bnyn, b1, . . . , bn, d ∈ R, d 6= 0.

From this we have (dc)z ∈ R{x1, . . . , xm, y1, . . . , yn} with dc 6= 0. �

Remark. There is another way to talk about all this, using tensor products to reduce to dimension
theory for vector spaces. Let F = Frac(R) be the fraction field. Then for any R-module M the
tensor product V := F ⊗RM is naturally an F -module. It turns out that rankRM = dimF V .

60. Annihilator ideals and cyclic modules

Let R be a ring with 1 (but not assumed to be commutative). Given a (left) R-module M , the
annihilator of M is the subset annihilator

Ann(M) := {x ∈ R | xM = 0 } = {x ∈ R | xm = 0 for all m ∈M }
of the ring R.

Proposition. Ann(M) is a two-sided ideal in R.

Proof. Straightforward: 0M = 0, if xM = 0 = yM , then (x+ y)M = 0, if xM = 0 then xrM = 0
for all r ∈ R, and also rxM = 0 for all r ∈ R. �

Proposition. If M ≈ N are isomorphic left R-modules, then Ann(M) = Ann(N).

Proof. Clear: if φ : M → N is an isomorphism, then rm = 0 for all m ∈M implies rn = 0 for all
n ∈ N since n = φ(m) for some m, and conversely using φ−1 : N →M . �

Example. Suppose I ⊆ R is a 2-sided ideal. Then Ann(R/I) = I. To see this, note (i) if x(R/I) = 0,
then in particular x1 ∈ I, so x ∈ I, and (ii) if x ∈ I, then for any y ∈ R we have xy ∈ I since I is
also a right ideal.

Remark. If I ⊆ R is merely a left ideal, then Ann(R/I) ⊆ I, but they are not necessarily equal. For
instance, consider R = M2×2(F ) with F a field, and let I be the subset of all matrices whose second
column is 0. Then Ann(R/I) = 0 but I 6= 0.

Proposition. Let R be ring, and I, J ⊆ R 2-sided ideals. Then R/I ≈ R/J as left R-modules iff
I = J .

Proof. If I = J then R/I and R/J are identical modules, and so are certainly isomorphic. Conversely,
if there is a left module isomorphism R/I ≈ R/J , then

I = Ann(R/I) = Ann(R/J) = J.

�

Example. This can fail if the ideals are not 2-sided ideals. For instance, consider the left ideals
I, J ⊆ R = M2×2(F ), consisting of matrices whose first or second column is 0 respectively. Then
I 6= J but R/I ≈ R/J as modules.

If R is commutative, then this implies that R/I and R/J are isomorphic modules iff I = J .
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61. Classification of modules over a PID

Let R be a PID. We are going to classify finitely generated modules over R. In the case of R = Z,
this will give the classification of finitely generated abelian groups. In the case of R = F [x], this
will lead to theorems on canonical forms of linear operators.

Since the PID R is commutative ring, we have that R/(a) ≈ R/(b) as modules iff (a) = (b), i.e.,
iff a and b are the same up-to-units.

The cyclic modules for a domain come in three types.

• The trivial cyclic module R/(a) = {0}, when a ∈ R×.
• The nontrivial torsion cyclic module R/(a), when a 6= 0 and a /∈ R×.
• The free cyclic module R = R/(0).

Here is the key fact.

Proposition. Every finitely generated module over a PID is isomorphic to a finite direct sum of
cyclic modules.

Remark. This is certainly false for general rings. For instance, suppose R = Z[x] and consider
the submodule M = R{2, x} ⊆ R (which is also the ideal (2, x)). Then M is not a cyclic module
(exactly because it is not a principal ideal), but it is also not isomorphic to a direct sum of any two
non-trivial modules. (See exercise.)

Remark. This fails for infinitely generated modules over a PID. For instance, as a Z-module, M = Q
is not a direct sum of cyclic modules.

We can sharpen the above to a classification of finitely generated modules over a PID.

Theorem (Modules over a PID: Invariant factor form). Let R be a PID, and M a finitely generated
R-module.

• There exists t ≥ 0 and a chain of proper ideals R ) (a1) ⊇ · · · ⊇ (at) such that

M ≈ R/(a1)⊕ · · · ⊕R/(at).
• The number t and the sequence (a1), . . . , (at) of ideals are unique, in the sense that if also
M ≈ R/(a′1)⊕ · · · ⊕R/(a′t′) with R ) (a′1) ⊇ · · · ⊇ (a′t′), then t = t′ and (ak) = (a′k) for all
k.

Remark. Write t = s+r with 0 ≤ s, r ≤ t where (a1), . . . , (as) 6= (0) and (as+1) = · · · = (as+r) = (0).
Then this becomes

M ≈ R/(a1)⊕ · · · ⊕R/(as)⊕Rr,
where each R/(a1), . . . , R/(as) is a torsion cyclic module, and rankM = r. This is how the invariant
factor decomposition is usually presented.

The ideals (a1), . . . , (as) are called invariant factors, and r = rankM . invariant factors

Example. If R = Z, then we get the invariant factor classification of finitely generated abelian
groups:

M ≈ Z/(a1)⊕ · · · ⊕ Z/(as)⊕ Zr, a1 | · · · | as.

There is another form of this classification.

Theorem (Modules over a PID: Elementary divisor form). Let R be a PID, and M a finitely
generated R-module.

• There exist r, u ≥ 0, and a sequence of elements pk11 , . . . , p
ku
u ∈ R (not necessarily distinct)

with pi prime and ki ≥ 1, such that

M ≈ Rr ⊕R/(pk11 )⊕ · · · ⊕R/(pkuu ).
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• The numbers r and u are unique, and the sequence pk11 , . . . , p
ku
u is unique up to reordering

and units, in the sense that if also M ≈ Rr′ ⊕R/(q`11 )⊕ · · · ⊕R/(q`u′u′ ), then r = r′, u = u′,

and the sequence q`11 , . . . , q
`u
u is the same as pk11 , . . . , p

ku
u up to reordering and units.

Remark. In the elementary divisor form, we also have r = rankM . The list pk11 , . . . , p
ku
u are called

elementary divisors. elementary divisors

Example. If R = Z, then we get the elementary divisor classification of finitely generated abelian
groups:

M ≈ Zr ⊕ Z/(pk11 )⊕ · · · ⊕ Z/(pkuu ),

each pi a prime number and each ki ≥ 1.

62. Existence of invariant factor form 1

We will proceed by proving in sequence: Existence of invariant factor form ⇒ Existence of W 26 Oct
elementary divisor form ⇒ Uniqueness of elementary divisor form ⇒ Uniqueness of invariant factor
form.

The idea will be to observe note that any finitely generated module is isomorphic to a quotient
M/N where M is a finite rank free module.

Proposition. Let M be a free R-module of rank m, and N ⊆M a submodule. Then

(1) N is a free R-module of some rank n ≤ m, and
(2) there exists

• a free basis x1, . . . , xm of M , and
• elements a1, . . . , an ∈ R with (a1) ⊇ · · · ⊇ (an) ) (0), such that
• y1 = a1x1, . . . , yn = anxn is a free basis of N .

This gives the existence of invariant factor decomposition. If A is a finitely generated module,
produce a surjective homomorphism φ : M � A from some finite rank free module. Then A ≈M/N
with N = Kerφ. By the proposition, we get that

A ≈M/N ≈ Rx1/Ra1x1 ⊕ · · · ⊕ Rxn/Ranxn ⊕ Rxn+1 ⊕ · · · ⊕ Rxm.

We have Rxk/Rakxk ≈ R/(ak) for k = 1, . . . , n, and Rxk ≈ R/(0) = R if k = n+ 1, . . . ,m. Note
that it is possible that (a1) = · · · = (ap) = R for some p > 0, in which case R/(ak) ≈ 0 for k ≤ p. If
so, we can remove those factors and reindex, so that t = m− p.

63. Existence of invariant factor form 2

Now we prove the proposition.

Proof of proposition, Part 1. We are going to work by induction on rank of N . Note that the rank
of N is in fact finite and ≤ m: any R-independent subset of N is also an R-independent subset of
M , so rankN ≤ rankM .

If rankN = 0 then N is torsion. But the only torsion element in the free module M is 0, so
N = 0.

So we suppose rankN = n > 0, whence N 6= 0.
We are going to find an R-module homomorphism φ1 : M → R, an element x1 ∈ M , and an

element a1 ∈ R, such that

(a) a1x1 ∈ N and φ1(x1) = 1,
(b) φ1(N) = (a1) 6= (0), and
(c) If φ ∈ HomR(M,R), then (a1) ⊆ φ(N) implies (a1) = φ(N).
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Now we produce φ1, x1, a1 and prove (a),(b),(c). Let

ΣN = {φ(N) | φ ∈ HomR(M,R) },
a set of ideals in R, which can be ordered by the subset relation. Note that if N 6= 0, then ΣN

contains at least one non-trivial ideal. Since M is free, there exists an isomorphism M
∼−→ Rm, with

component functions πi : M → R. Thus any non-zero element x ∈M will have πi(x) 6= 0 for some i,
so there exists i such that πi(N) 6= (0).

We choose φ1 so that φ1(N) is maximal in the poset ΣN , and a1 so that φ1(N) = (a1), and
(a1) 6= (0) since (0) cannot be maximal. We have proved (b). Maximality of φ1 is precisely (c).

Pick y1 ∈ N such that φ1(y1) = a1. I will show that for any φ ∈ HomR(M,R), we have that
φ(y1) ∈ (a1). Since R is a PID, there exists

(d) = (a1, φ(y1)) = (φ1(y1), φ(y1)), d ∈ R.
Thus there exists

d = c1φ1(y1) + c2φ(y1), c1, c2 ∈ R.
Let φ′ := c1φ1 + c2φ ∈ HomR(M,R), whence d = φ′(y1). But φ′(N) ⊇ (d) ⊇ φ(N), so maximality
of φ implies φ′(N) = φ(N), so (d) = (a1) and thus φ(y1) ∈ (a1).

Apply this to the projection homomorphisms π1, . . . , πm : M → R associated to some choice of
free basis e1, . . . , em of M . Then πi(y1) = ciai for some ci ∈ R. Set x1 := c1e1 + · · ·+ cmem, whence
a1x1 = y1. Since a1φ(x1) = φ1(y1) = a1, we must have φ(x1) = 1 since a1 6= 0. We have proved
(a). �

64. Existence of invariant factor form 3

Proof of proposition, part 2. Having produced φ1, x1, a1 satisfying (a),(b),(c), we prove the following.

(d) M = Rx1 ⊕M ′, where M ′ = Ker(φ).
(e) N = Ra1x1 ⊕N ′, where N ′ = N ∩Ker(φ).
(f) rankN ′ = n− 1.
(g) for all φ ∈ HomR(M,R) we have φ(N ′) ⊆ (a1).

Claim (d) is clear: Rx1 ∩Ker(φ1) = 0 since φ(rx1) = r, while if x ∈M , then x−φ1(x)x1 ∈ Ker(φ1),
using (a). Similarly for (e): Ra1x1 ∩Ker(φ1) = 0, and if y ∈ N , then φ1(y) = ca1 for some c ∈ R
using (b), so y − φ1(y)x1 = y − c(a1x1) ∈ Ker(φ1). To prove (f): since φ1(a1x1) = a1 6= 0 by (b),
we have rank(Ra1x1) = 1, so rankN = 1 + rankN ′.

Finally, to prove (g): Since we have a direct sum decomposition M = Rx1 ⊕ M ′, given a
homomorphism φ : M → R, we can define a new homomorphism φ′ : M → R by

φ′(cx1 +m′) := c+ φ(m′), c ∈ R, m′ ∈M ′.
Since N = Ra1x1 ⊕N ′, we compute compute

φ′(N) = (a1) + φ′(N ′) ⊇ (a1), φ′(N ′) = φ(N ′).

By (c) this first statement implies φ′(N) = (a1), and therefore

φ(N ′) = φ′(N ′) ⊆ φ′(N) = (a1),

as desired.
Now we show (1) that N is free, by induction on n = rankN . If rankN > 0, then the above

argument gives us a decomposition N = Ra1x1 ⊕N ′, with rankRa1x1 = 1 and rankN ′ = n − 1.
Induction on rank gives that N ′ is free, and hence N is free. Because N ⊆ M we already know
rankN ≤ rankM .

Now we prove (2), by induction on n = rankN . If rankN > 0, then the above argument
gives us submodules N ′ ⊆ M ′ ⊆ M . By (1) already proved we see that M ′ is free, and we know
rankN ′ = n− 1. Thus by induction we have
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• a free basis x2, . . . , xm of M ′, and
• elements a2, . . . , an ∈ R with (a2) ⊇ · · · ⊇ (an) ) (0), such that
• y2 = a2x2, . . . , yn = anxn is a free basis of N ′.

Combining this with x1 ∈M and a1 ∈ R as in (d) and (e), we obtain a free basis x1, . . . , xm of M ,
and a free basis a1x1, . . . , anxn of N . It remains to show that (a1) ⊇ (a2).

Define φ : M → R so that φ(x2) = 1 and φ(xi) = 0 if i 6= 2. Then

φ(N ′) = φ(Ra2x2 + · · ·+Ranxn) = (a2).

By (g), we conclude that (a2) = φ(N ′) ⊆ (a1), as desired.
�

65. Existence of elementary divisor form

Earlier, we proved a general “Chinese remainder theorem” for commutative rings:

If A1, . . . , An ⊆ R are ideals which are pairwise comaximal (Ai +Aj = R if i 6= j),
and A = A1 · · ·An is the product ideal, then there is an isomorphism of rings

R/A
∼−→ R/A1 × · · · ×R/An,

defined by x+A 7→ (x+A1, . . . , x+ an).

A feature of this is that this isomorphism is also an isomorphism of R-modules.
Now suppose R is a PID (and thus a UFD). Given a ∈ R r {0} which is not a unit, it has a

prime factorization

a = pk11 · · · p
kr
r , pi primes, distinct up to units, ki ≥ 1.

For i 6= j, we see that pkii , p
kj
j are relatively prime, so (pkii ) + (p

kj
j ) = (pkii , p

kj
j ) = R is the unit ideal.

Thus we can apply the CRT and obtain an isomorphism of rings and of R-modules:

R/(a) ≈ R/(pk11 )⊕ · · · ⊕R/(pkrr ).

This is a primary divisor decomposition of the torsion cyclic module R/(a).
For a general finitely generated module M we have an invariant factor decomposition:

M ≈ Rr ⊕R/(a1)⊕ · · · ⊕R/(as), R ) (a1) ⊆ · · · ⊇ (as) ) (0).

We can replace each R/(ak) with a primary divisor decomposition. This gives a primary divisor
decomposition for M .

66. Modules and quotient rings

Let R be a commutative ring R, and M an R-module. Suppose I ⊆ R is an ideal such that F 28 Oct
I ⊆ Ann(M). That is, IM = 0, or more concretely, am = 0 for all a ∈ I and m ∈M .

Then M admits the structure of an R/I-module, defined so that

(r + I)m := rm.

It is clear this is well-defined, exactly because rm = 0 if r ∈ R.
Furthermore, if M ≈ N as R-modules, and if IM = 0, then also IN = 0 and the isomorphism is

also an isomorphism of R/I-modules.

Example. Let R = Z and M a Z-module (=abelian group), such that (p)M = 0 for some prime
number p. (Note: we usually write pM = (p)M when we have a principal ideal.) In other words,
every element of the abelian group M has order either 1 or p.

Then M is naturally a module over Fp = Z/p, i.e., it is an Fp-vector space. This has a numerical
invariant, which is its dimension dimZ/pM . By the above remarks, this is an isomorphism invariant
of abelian groups M for which pM = 0. That is, if M ≈ N and pM = 0, then dimZ/pM = dimZ/pN .



LECTURE NOTES (PART 2), MATH 500 (FALL 2022) 52

Submodules IM and quotient modules M/IM . Let I ⊆ R be an ideal in a commutative ring
R. Given any R-module I, we can form

IM := { a1m1 + · · · akmk | ai ∈ I, mi ∈M, k ≥ 0 }.
This is a submodule of M .

We thus have a quotient module M/IM . Note that the ideal I annihilates M/IM by construction:
a(x+ IM) = ax+ IM ∈ IM if a ∈ I. Therefore the R-module structure on M/IM descends to an
R/I-module structure.

Proposition.

(1) If φ : M → N is an isomorphism of R-modules, then φ restricts to an isomorphism IM → IN
of submodules. It further induces an isomorphism M/IM → N/IN on quotient modules,
which is an isomorphism of R/I-modules.

(2) If M = M1 ⊕ · · · ⊕ Mn is an internal direct sum decomposition of an R-module, then
IM = IM1 ⊕ · · · ⊕ IMn, and thus M/IM ≈M/IM1 ⊕ · · · ⊕M/IMn as R/I-modules.

(3) If M is a finitely generated R-module, then and M/IM is a finitely generated as an R-module,
and as an R/I-module.

(4) If M is a finitely generated R-module, and I ⊆ R is a finitely generated ideal, then IM is a
finitely generated R-module.

Proof. Exercise. �

67. Uniqueness of decompositions

Let R be a PID. For any prime p in R and k ≥ 1, I will constuct an isomorphism invariant
βpk(M) ∈ Z≥0 of finitely generated R-modules. Then I will show that, for any elementary divisor
decomposition of M , the number βpk(M) = the number of elementary divisors in that decomposition

which are equal to pk up-to-units. Since the definition of βpk(M) makes no reference to the
decomposition, this will immediately imply uniqueness of the lists of elementary divisors.

We can combine this with the invariant rank(M) ∈ Z≥0, which is also an isomorphism invariant
and counts the number of free factors in any elementary divisor decomposition. Together these
demonstrate the uniqueness of elementary divisor decompositions.

Let R be a PID, and p ∈ R a prime, and consider a finitely generated module M . Note that
pk+1M = p(pkM) ⊆ pkM . Thus we obatin a chain of submodules

M = p0M ⊇ p1M ⊇ p2M ⊇ · · · ,
each of which is also finitely generated. We therefore get quotients

M/pM, pM/p2M, p2M/p3M, . . . ,

each of which is a finitely generated R/p-module. We can also write these as pk−1M/pkM = N/pN ,
where N = pk−1M .

Note that since p is irreducible, R/p is a field. For k ≥ 1 define

αpk(M) := dimR/p p
k−1M/pkM.

Proposition.

(1) The function αpk is an isomorphism invariant of finitely generated R-modules.
(2) If M ≈M1 ⊕ · · · ⊕Mn, then αpk(M) = αpk(M1) + · · ·+ αpk(Mn).
(3) If M ≈ R/(a) for some a ∈ R, then

αpk(M) =

{
1 if pk | a,

0 if pk - a.

In particular, when a = 0 this says that αpk(R) = 1.
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Proof. Statement (1) is a consequence of part (1) of the previous proposition, and the fact that if
M ≈ N , then pk−1M ≈ pk−1N , and therefore pk−1M/p(pk−1M) ≈ pk−1N/p(pk−1N). Statement
(2) is a immediate from part (2) of the previous proposition.

For statement (3), let M = R/(a) and N = pk−1M , so that αpk(M) = dimR/p(N/pN). First I’ll
describe N .

Consider any b ∈ R with b 6= 0, and suppose N = bM = b(R/(a)). We have

N = b(R/(a)) = (a, b)/(a),

where (a, b) ⊆ R is the submodule (also ideal) generated by a and b. The point is that r ∈ b(R/(a))
iff r = bx+Ra for some x ∈ R, iff r = bx+ ay for some x, y ∈ R.

In a PID, we have that (a, b) = (d) where d is a GCD of a and b. Then we can write a = da′ for
some a ∈ R, and we hhave an isomorphism of R-module.

R/(a′) ∼−→ (d)/(a), r 7→ rd.

The point is that multiplication by d gives a surjective function R→ (d), and the preimage of (a)
under this function is (a′). Thus N ≈ R/(a′) where a′ = a/ gcd(a, b).

Now suppose b = pk−1, and consider M = R/(a) where a = ptm with t ≥ 0 and p - m. We want
to compute

dimR/p(p
k−1M/pkM) = dimR/p(N/pN)

where N = pk−1M . Writing N = R/(a′), we have

dimR/p(N/pN) =

{
1 if p | a′,
0 if p - a′.

By the above discussion, we have

a′ =
a

gcd(a, pk−1)
=

ptm

gcd(ptm, pk−1)
=

ptm

pmax(t,k−1) .

Thus p | a′ iff t ≥ k iff pk | a, which is what we wanted. �

As a consequence, if

M ≈ Rr ⊕R/(a1)⊕ · · · ⊕R/(am), ak ∈ Rr {0},
we have

αpk(M) = r + number of j ∈ {1, . . . ,m} such that pk | aj .
Now define

βpk(M) = αpk(M)− αpk+1(M).

Then for the above M , we have

βpk(M) = number of j ∈ {1, . . . ,m} such that pk | aj and pk+1 - aj .
By construction, αpk and thus βpk are isomorphism invariants, and we have shown that, for any

elementary divisor decomposition

M ≈ Rr ⊕R/(pk11 )⊕ · · · ⊕R/(pkuu ),

we have that βpk(M) = the number of elementary divisors in pk11 , . . . , p
ku
u which are the same as pk

up-to-units. This proves uniqueness of elementary divisor decompostions.
Now suppose

M ≈ Rr ⊕R/(a1)⊕ · · · ⊕R/(as), R ) (a1) ⊇ · · · ⊇ (as) ) (0)

is an invariant factor decomposition. By an exercise I will leave to you, it turns out that

s = max {αp(M) | p ∈ R prime element } − r, r = rank(M),
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and
(aj) = (p

c1,j
1 · · · pcr,jd ),

where p1, . . . , pd are all primes (distinc up-to-units) such that αp(M) > r, and

ci,j = the integer k such that αpk+1
i

(M) < r + s+ 1− j ≤ αpki (M).

Thus the primes pi and numbers r, s, and ci,j are determined by the values of αpk(M) and rank(M).
This proves uniqueness of invariant factor decompositions.

68. Canonical form for linear maps

Recall that given a linear operator, i.e., a pair (V, T : V → V ), where V is an F -vector space linear operator

and T is an F -linear operator on V , we can give V the structure of an R = F [x]-module, so that

fv := f(T )v, f ∈ F [x], v ∈ V.
I’m going to write VT for this F [x]-module.

Conversely, every F [x]-module M is of the form VT for some (V, T ), where V the underlying
F -vector space of the module M (so V = M as an abelian group), and T is defined by T (v) := xv.
So F [x]-modules are really the same as F -linear operators.

There is a dictionary for going back and forth between properties of the linear operator (V, T )
and properties of the F [x]-module VT .

• Submodules of VT correspond to T -invariant subspaces, i.e., vector subspaces W ⊆ V such
that T (W ) ⊆W .
• Homomorphisms φ : VT →WU of F [x]-modules correspond to linear maps which interwine
U and V , i.e., linear maps φ : V →W such that φ ◦ T = U ◦ φ.
• VT and VU are isomorphic as F [x]-modules iff the linear operators T and U are similar, i.e.,

if there exists a linear isomorphism φ : V → V such that U = φ ◦ T ◦ φ−1.
• Given (V, T ) the space V is finite dimensional over F if and only if VT is finitely generated

and torsion as an F [x]-module.
To see this, note that if VT contains a non-torsion element v, then it contains a free cyclic

submodule Rv ⊆ VT , and dimF Rv is infinite. Conversely, if VT is finitely generated and
torsion, then the classification theorem gives an isomorphism VT ≈ F [x]/(f1)⊕· · ·F [x]/(fm)
for some polynomials fk. If some fk = 0 then dimF VT is infinte, while if all fk 6= 0 then
dimF VT = deg(f1) + · · ·+ deg(fm).

Given (V, T ) finite dimensional, consider the annihilator ideal Ann(VT ) = (f) ⊆ F [x]. By
the classification theorem we can write VT ≈

⊕m
k=1R/(fk) for some nonzero fk, and therefore

0 6= f1 · · · fm ∈ Ann(VT ), whence f 6= 0. We usually assume f is monic, in which case we call f the
minimal polynomial of T . minimal polynomial

Proposition. Consider (V, T ) with V finite dimensional, and f = the minimal polynomial of T .
For any c ∈ V TFAE.

(1) There exists v ∈ V with v 6= 0 such that Tv = cv. That is, c is an eigenvalue of T .
(2) f(c) = 0.

Proof. By the division algorithm we have f = (x− c)g+ r = g · (x− c) + r with g ∈ F [x] and r ∈ F .
(1) =⇒ (2). Given v 6= 0 with Tv = cv, we have (x− c)v = 0, and so

0 = f(T )v = g(T )(T − cI)v + rv = rv,

whence r = 0.
(2) =⇒ (1). If f(c) = 0 then r = 0, so f = (x− c)g. Since g /∈ (f) = Ann(VT ), there exists w ∈ V

such that v := g(T )w 6= 0. Therefore

0 = f(T )w = (T − cI)g(T )w = (T − cI)v,
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so v 6= 0 and Tv = cv. �

Given any F [x]-module decomposition

VT ≈M1 ⊕ · · · ⊕Mn = F [x]/(f1)⊕ · · · ⊕ F [x]/(fm),

we can give a block matrix representation of T of the form
B1

B2

. . .

Bm


by choosing an F -basis e1, . . . , en of V , so that the first batch of basis elements are in M1, the
second batch in M2, and so on. I’ll describe some choices for cyclic modules.

Given VT = F [x]/(f) with f = xk + bk−1x
k−1 + · · ·+ b1x+ b0 a monic polynomial over F , we

can use the basis
e1 = 1, e2 = x, . . . , ei = xi−1, . . . , ek = xk−1.

Then the matrix describing the operator T in this basis is the k × k companion matrix companion matrix

Cf =



0 0 . . . . . . 0 −b0
1 0 . . . . . . 0 −b1
0 1 . . . . . . 0 −b2
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . . . . 1 −bk−1


A matrix is in rational canonical form if it is a diagonal block matrix whose non-trivial blocks are rational canonical form

companion matrices Cf1 , . . . , Cfm for non-constant monic polynomials fk such that f1 | f2 | · · · | fm.

Theorem (Rational canonical form). Given an operator (V, T ) on a finite dimensional vector
space, there exists a basis with respect to which the matrix A of T is in rational canonical form.
Furthermore, the rational canonical form matrix is unique.

Example. If F = R and T is the operator on V = R2 given by left multiplication by

[
cos θ − sin θ
sin θ cos θ

]
,

then the rational canonical form is A =

[
0 −1
1 2 cos θ

]
.

Note that the characteristic polynomial of the companion matrix is

det(xI − Cf ) = f(x),

and thus if VT ≈
⊕m

k=1 F [x]/(fk) with fk monic, then the characteristic polynomial of T is

det(xI − T ) = f1(x) · · · fm(x).

If f is the minimal polynomial of T then f1 · · · fm ∈ Ann(VT ) = (f).

Corollary (Cayley-Hamilton). For any linear operator T on a finite dimensional space, its minimal
polynomial divides its characteristic polynomial.

If VT = F [x]/(x− c)k, then in terms of the basis

e1 = (x− c)k−1, e2 = (x− c)k−2, . . . , ek−1 = x− c, ek = 1,

the matrix describing T is the k × k Jordan matrix Jordan matrix
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Jk(c) :=



c 1 0 . . . . . . 0 0
0 c 1 . . . . . . 0 0
0 0 c . . . . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . . 1 0
0 0 0 . . . . . . c 1
0 0 0 . . . . . . 0 c


Thus for an operator T whose characteristic (or minimal) polynomial is a product of linear factors
in F [x], the elementary divisors of T will all have the form (x − ci)ki with ci ∈ F and ki ≥ 1, in
which case there exists a basis such that T is represented in Jordan canonical form, i.e., as a Jordan canonical form

diagonal block matrix whose blocks are Jordan matrices, and which is unique up to reordering the
Jordan blocks.
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