Math 500: HW 12 due Friday, December 1, 2023.

- 1. Let *F* be a field of characteristic \neq 2.
 - (a) Suppose $K = F(\sqrt{D_1}, \sqrt{D_2})$ for D_1 and D_2 in F where none of D_1 , D_2 , or D_1D_2 is a square in F. Prove that K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group.
 - (b) Conversely, suppose K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group. Prove that $K = F(\sqrt{D_1}, \sqrt{D_2})$ for D_1 and D_2 in F where none of D_1 , D_2 , or D_1D_2 is a square in F.
- 2. Suppose *K* is the splitting field over \mathbb{Q} of a cubic polynomial $f(x) \in \mathbb{Q}[x]$. Show that if $Gal(K/\mathbb{Q})$ is the cyclic group of order 3, then all the roots of *f* are real. Hint: by calculus, *f* must have at least one real root.
- 3. Suppose $\mathbb{Q}(\alpha)/\mathbb{Q}$ is algebraic and let *L* be the splitting field of $m_{\alpha,\mathbb{Q}}(x)$. If *p* is a prime dividing the order of $\text{Gal}(L/\mathbb{Q})$, show that there is a subfield *F* of *L* with [L : F] = p and $L = F(\alpha)$.
- 4. Consider $K = \mathbb{Q}(\sqrt[8]{2}, i)$ from Example 3 of Section 14.2 of [DF], and let $F_1 = \mathbb{Q}(i)$, $F_2 = \mathbb{Q}(\sqrt{2})$, $F_3 = \mathbb{Q}(\sqrt{-2})$. Prove that $\text{Gal}(K/F_1) \cong \mathbb{Z}/8$, $\text{Gal}(K/F_2) \cong D_8$, $\text{Gal}(K/F_3) \cong Q_8$. (Note: in particular, you need to show all these extensions are Galois extensions.)
- 5. Let $L \subseteq \mathbb{C}$ be a subfield such that L/\mathbb{Q} be a finite Galois extension of degree 3, and let $\omega := e^{2\pi i/3} \in \mathbb{C}$. Show that if $\omega \notin L$, then $L(\omega)/\mathbb{Q}$ is a Galois extension with $\operatorname{Gal}(L(\omega)/\mathbb{Q}) \approx \mathbb{Z}/3 \times \mathbb{Z}/2 \approx \mathbb{Z}/6$.
- 6. Suppose $f \in \mathbb{Q}[x]$ is an irreducible degree 4 polynomial and *L* a splitting field for *f*. Suppose further than $G = \text{Gal}(L/\mathbb{Q}) \approx S_4$. Let θ be a root of *f* and set $K = \mathbb{Q}(\theta)$. Prove that *K* is an extension of \mathbb{Q} of degree 4 which has no proper subfields. Are there any Galois extensions of degree 4 over \mathbb{Q} with no proper subfields? (This problem has been corrected.)
- 7. Find a primitive generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} . Be sure to justify your answer.
- 8. Let K/F be a Galois extension and $\alpha \in K$. Define the *norm* of α from *K* to *F* to be

$$N_{K/F}(\alpha) = \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma(\alpha)$$

- (a) Prove that $N_{K/F}(\alpha) \in F$.
- (b) Prove that $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$. Thus, the norm gives a group homomorphism $K^{\times} \to F^{\times}$.
- (c) Prove that $N_{K/F}(a\alpha) = a^n N_{K/F}(\alpha)$ where $a \in F$ and n = [K : F].
- (d) Let $K = F(\sqrt{D})$ be a quadratic extension of a field F whose characteristic is not 2. Show that $N_{K/F}(a + b\sqrt{D}) = a^2 Db^2$, where $a, b \in F$. (This subproblem has been corrected.)
- (e) Let *K* be the splitting field of $x^3 2$ over \mathbb{Q} . Compute $N_{K/Q}$ for $\alpha = \sqrt[3]{2}$ and for $\zeta = \zeta_3$.

Note: It is possible to define $N_{K/F}(\alpha)$ even when K/F is not Galois, see Problem #17 in Section 14.2 of our text.

Credit: Problems by Charles Rezk or Dummit and Foote.