Math 500: HW 10 due Friday, November 10, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.

1. Let L / K be a finite field extension, and f an irreducible polynomial over K. Show that if $\operatorname{deg} f$ does not divide [$L: K$], then f has no roots in L.
2. Show that $p=x^{3}+9 x+6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p, and find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.
3. Determine the minimal polynomial of $1+i$ over \mathbb{Q}.
4. Let F be a subfield of \mathbb{C}. Show that for $D, E \in F$, we have $F(\sqrt{D}, \sqrt{E})=F(\sqrt{D}+\sqrt{E})$. Hint: write $\alpha=\sqrt{D}+\sqrt{E}$, and express \sqrt{D} and \sqrt{E} as polynomials in α.
5. Let F be a subfield of \mathbb{C}. Show that for $D, E \in F$, we have $[F(\sqrt{D}, \sqrt{E}): F]=4$ if and only if $\sqrt{D}, \sqrt{E}, \sqrt{D E} \notin F$. Hint: if $\sqrt{E} \in F(\sqrt{D})$, then $\sqrt{E}=u+v \sqrt{D}$ for some $u, v \in F$. Use this to derive a contradiction.
6. Show that if $D= \pm p_{1} \cdots p_{r}$ where $p_{i} \in \mathbb{Z}$ are distinct primes, then $\sqrt{D} \notin \mathbb{Q}$.
7. Show that if p_{1}, \ldots, p_{r} are distinct primes, then $\left[\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right): \mathbb{Q}\right]=2^{r}$. Hint: use induction on r and Problems 5 and 6 above.
8. Let F be a field of characteristic $\neq 2$. Let $a, b \in F$ with b not a square in F. Prove there exist $m, n \in F$ such that $\sqrt{a+\sqrt{b}}=\sqrt{m}+\sqrt{n}$ (in some extension field of F) if and only if $a^{2}-b$ is a square in F. Hint: find a polynomial over F whose roots are $\{\sqrt{m}+\sqrt{n},-\sqrt{m}+\sqrt{n}, \sqrt{m}-\sqrt{n}$, $-\sqrt{m}-\sqrt{n}\}$.
9. Determine the minimal polynomial of $\alpha=\sqrt{1+\sqrt{2}}$ over \mathbb{Q}. In particular, explain why it has degree 4.
10. Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
11. Let K / F be an algebraic extension and let R be a subring of K containing F. Show that R is a subfield of K containing F.

Credit: Problems 1, 6, 7, and 9 by Charles Rezk, rest from Dummit and Foote.

