Math 500: HW 8 due Friday, October 20, 2023.

1. Let K be a finite field of order q. Show that in $R=K[x]$ there are exactly (i) q monic irreducible polynomials of degree 1 and (ii) $\left(q^{2}-q\right) / 2$ monic irreducible polynomials of degree 2. (Hint: there are exactly q^{k} monic polynomials of degree k, so instead count the reducible ones.)
2. Prove that $K_{1}=\mathbb{F}_{11}[x] /\left(x^{2}+1\right)$ and $K_{2}=\mathbb{F}_{11}[y] /\left(y^{2}+2 y+2\right)$ are both fields with $11^{2}=121$ elements. Prove that the map which sends the element $p(\bar{x})$ of K_{1} to the element $p(\bar{y}+1)$ of K_{2} is well-defined and gives a ring isomorphism from K_{1} to K_{2}.
3. Let F be a field. Prove that $F[x]$ contains infinitely many prime elements. Hint: modify Euclid's proof of the infinitude of primes in \mathbb{Z}.
4. Prove that $x^{2}+y^{2}-1$ is irreducible in $\mathbb{Q}[x, y]$.
5. This exercise produces a non-Noetherian ring (in fact, as a subring a Noetherian ring). Let F be a field, and consider the polynomial ring $R:=F[x, y]=F[x][y]$. Any $f(x, y) \in R$ can be written $f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}+\cdots+f_{n}(x) y^{n}$ where $n \geq 0$ and all $f_{k}(x) \in F[x]$.
(a) Consider $S=\{a+y \cdot g(x, y) \mid a \in F$ and $g(x, y) \in R\} \subseteq R$; equivalently, S consists of $f \in R$ where the $f_{0}(x)$ above is in F. Show that S is a subring (with 1) of R.
(b) Let $I_{k} \subseteq S$ be the ideal of S generated by the subset $\left\{y, x y, \ldots, x^{k-1} y\right\}$. Show that if $f(x, y)=\sum f_{i}(x) y^{i}$ is an element of I_{k}, then $\operatorname{deg}_{x} f_{1}(x)<k$ (meaning degree as a polynomial in x).
(c) Conclude that for all k we have that $x^{k} y \notin I_{k}$. Use this to show that S is not Noetherian.
6. Let R be a commutative ring, and let M be a module with submodules $N_{1}, N_{2} \subseteq M$. Show that if $N_{1} \cap N_{2}=0$ and $N_{1}+N_{2}=M$, then there are R-module isomorphisms $M / N_{1} \approx N_{2}$ and $M / N_{2} \approx N_{1}$.
7. Let R be a commutative ring with 1 . Given an ideal I of R and an R-module M, define:

$$
I M=\left\{\sum_{\text {finite }} a_{i} m_{i} \mid a_{i} \in I, m_{i} \in M\right\} .
$$

(a) Prove that $I M$ is a submodule of M.
(b) Show that if $I M=0$, then M can be given the structure of an R / I module, with action defined by $\bar{r} \cdot m:=r \cdot m$.
8. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \approx \mathbb{Z} / d \mathbb{Z}$, where $d=\operatorname{gcd}(m, n)$.
9. Let N be a submodule of M. Prove that if both M / N and N are finitely generated then so is M.

Credit: Problems 1, 5, 6, and 7(b) are from $[\mathrm{R}]$ and the rest from [DF].

