Math 500: HW 6 due Friday, October 6, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.

1. The center of a ring is $\operatorname{Center}(R):=\{z \in R \mid r z=z r \forall r \in R\}$. Show that the center Center (R) is a subring of R, which contains the identity of R if it has one. Show that the center of a division ring is a field.
2. Let R be a commutative ring with identity. Let $S \subseteq M_{2 \times 2}(R)$ be the set of upper triangular 2×2 matrices with entries in R. Show that S is a subring of $M_{2 \times 2}(R)$. Show that there is a surjective ring homomorphism $S \rightarrow R \times R$ and describe its kernel.
3. Recall the Hamilton quaternions $\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$. For $x=a+b i+c j+$ $d k$, define $\bar{x}:=a-b i-c j-d k$.
(a) Prove that $N(x):=x \bar{x}=a^{2}+b^{2}+c^{2}+d^{2}$, and that $N(x y)=N(x) N(y)$ for $x, y \in \mathbb{H}$.
(b) Let $\mathcal{O} \subseteq \mathbb{H}$ be the subring of integral quaternions (i.e., $a+b i+c j+d k$ such that $a, b, c, d \in$ \mathbb{Z}). Prove that $\mathcal{O}^{\times}=\{x \in \mathcal{O} \mid N(x)= \pm 1\} \approx Q_{8}$. (Hint: use that $N(x) \in \mathbb{Z}$ if $x \in \mathcal{O}$.)
(c) Determine Center(\mathbb{H}).
4. Prove that if $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{k} \subseteq \cdots, k \in \mathbb{Z}_{>0}$, is a chain of ideals of a ring R, then $J:=\bigcup_{k=1}^{\infty} I_{k}$ is also an ideal.
5. Let R be a commutative ring with 1 . Let I, J, P be ideals of R, with P a prime ideal. Show that if $I J \subseteq P$ then either $I \subseteq P$ or $J \subseteq P$.
6. Let $\phi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that if J is an ideal of S, then $\phi^{-1} J$ is an ideal of R.
(b) Prove that if ϕ is surjective and I an ideal of R, then $\phi(I)$ is an ideal of S. Give an example where this fails if ϕ is not surjective.
7. This problem has been removed as its solution is included in [R2].
8. Let R be a commutative ring, and let $N(R):=\left\{x \in R \mid x^{n}=0\right.$ for some $\left.n \in \mathbb{Z}_{>0}\right\}$. Show that N is an ideal.

Note: Remember to check that N is closed under addition; for a hint, see Prob. 7.3.29 in [DF].
9. Let R be a commutative ring with 1 . Show that (a) $N(R / N(R))=0$ and (b) that $N(R)$ is contained in the intersection of all prime ideals of R.
10. Let R be a domain, and let $N: R \rightarrow \mathbb{Z}$ be a function such that (i) $N(a)=0$ iff $a=0, N(1)=1$, and $N(a b)=N(a) N(b)$ for all $a, b \in R$, and (ii) $N(a) \in \mathbb{Z}^{\times}$implies $a \in R^{\times}$. Show that if $N(a)= \pm p$ for some prime integer p, then a is an irreducible element of R. Use this to show that $3+2 i$ is an irreducible element of $\mathbb{Z}[i]$.

Credit: Problems 7 and 10 are from [R] and the rest from [DF].

