Math 500: HW 6 due Friday, October 6, 2023.

Webpage: http://dunfield.info/500

Office hours: Wednesdays 1:30–2:30pm and Thursdays 2:00–3:00pm; additional times possible by appointment.

- 1. The center of a ring is $Center(R) := \{z \in R \mid rz = zr \; \forall r \in R\}$. Show that the center Center(R) is a subring of R, which contains the identity of R if it has one. Show that the center of a division ring is a field.
- 2. Let *R* be a commutative ring with identity. Let $S \subseteq M_{2\times 2}(R)$ be the set of upper triangular 2×2 matrices with entries in *R*. Show that *S* is a subring of $M_{2\times 2}(R)$. Show that there is a surjective ring homomorphism $S \rightarrow R \times R$ and describe its kernel.
- 3. Recall the Hamilton quaternions $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$. For x = a + bi + cj + dk, define $\overline{x} := a bi cj dk$.
 - (a) Prove that $N(x) := x\overline{x} = a^2 + b^2 + c^2 + d^2$, and that N(xy) = N(x)N(y) for $x, y \in \mathbb{H}$.
 - (b) Let $\mathcal{O} \subseteq \mathbb{H}$ be the subring of integral quaternions (i.e., a + bi + cj + dk such that $a, b, c, d \in \mathbb{Z}$). Prove that $\mathcal{O}^{\times} = \{x \in \mathcal{O} \mid N(x) = \pm 1\} \approx Q_8$. (Hint: use that $N(x) \in \mathbb{Z}$ if $x \in \mathcal{O}$.)
 - (c) Determine $Center(\mathbb{H})$.
- 4. Prove that if $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_k \subseteq \cdots$, $k \in \mathbb{Z}_{>0}$, is a chain of ideals of a ring R, then $J := \bigcup_{k=1}^{\infty} I_k$ is also an ideal.
- 5. Let *R* be a commutative ring with 1. Let *I*, *J*, *P* be ideals of *R*, with *P* a prime ideal. Show that if $IJ \subseteq P$ then either $I \subseteq P$ or $J \subseteq P$.
- 6. Let ϕ : $R \rightarrow S$ be a ring homomorphism.
 - (a) Prove that if *J* is an ideal of *S*, then $\phi^{-1}J$ is an ideal of *R*.
 - (b) Prove that if ϕ is surjective and *I* an ideal of *R*, then $\phi(I)$ is an ideal of *S*. Give an example where this fails if ϕ is not surjective.
- 7. This problem has been removed as its solution is included in [R2].
- 8. Let *R* be a commutative ring, and let $N(R) := \{x \in R \mid x^n = 0 \text{ for some } n \in \mathbb{Z}_{>0}\}$. Show that *N* is an ideal.

Note: Remember to check that *N* is closed under addition; for a hint, see Prob. 7.3.29 in [DF].

- 9. Let *R* be a commutative ring with 1. Show that (a) N(R/N(R)) = 0 and (b) that N(R) is contained in the intersection of all prime ideals of *R*.
- 10. Let *R* be a domain, and let $N: R \to \mathbb{Z}$ be a function such that (i) N(a) = 0 iff a = 0, N(1) = 1, and N(ab) = N(a)N(b) for all $a, b \in R$, and (ii) $N(a) \in \mathbb{Z}^{\times}$ implies $a \in R^{\times}$. Show that if $N(a) = \pm p$ for some prime integer p, then a is an irreducible element of R. Use this to show that 3 + 2i is an irreducible element of $\mathbb{Z}[i]$.

Credit: Problems 7 and 10 are from [R] and the rest from [DF].