Math 500: HW 4 due Friday, September 15, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.
Textbook: Dummit and Foote, Abstract Algebra, 3rd edition.
Suplemental text: Charles Rezk, Lecture Notes for Math 500, posted on our course webpage.

1. Exhibit all 2 and 3 Sylow subgroups of $S_{3} \times S_{3}$ and D_{12}.
2. Show that if $|G|=105$, then G has a normal cyclic subgroup of index 3 .
3. Show that if $|G|=315$ such that G has a normal 3-Sylow subgroup, then its center Z_{G} contains a 3-Sylow subgroup. Deduce that G is abelian.
4. Let $P \in \operatorname{Syl}_{p}(H)$, and $H \leq K$. If $P \unlhd H$ and $H \unlhd K$, prove that P is normal in K. Deduce that if $P \in \operatorname{Syl}_{p}(G)$ and $H=N_{G}(P)$, then $N_{G}(H)=H$ (i.e., normalizers of Sylow p-subgroups are self normalizing.)
5. Let P be a normal Sylow p-subgroup of G, and $H \leq G$. Prove that $P \cap H$ is the unique Sylow p-subgroup of H.
6. Let $P \in \operatorname{Syl}_{p}(G)$ and assume $N \unlhd G$. Use the conjugacy part of Sylow's theorem to prove that $P \cap N \in \operatorname{Syl}_{p}(N)$. Deduce that $P N / N \in \operatorname{Syl}_{p}(G / N)$.
7. Let A, B be finite groups, and p a prime number which divides the orders of both. Show that every p-Sylow subgroup of $A \times B$ is of the form $P \times Q$, with $P \in \operatorname{Syl}_{p}(A)$ and $Q \in \operatorname{Syl}_{p}(B)$. Conclude that $n_{p}(A \times B)=n_{p}(A) \times n_{p}(B)$. Note: See Chapter 5.1 of [DF] for background on direct products.
8. Show that every finitely generated subgroup of \mathbb{Q} is cyclic.
9. Let (P, \leq) be a partially ordered set. Show that (P, \leq) has the ascending chain condition if and only if every non-empty subset $S \subseteq P$ has a maximal element (that is, $\exists m \in S$ such that for all $s \in S, m \leq s$ implies $m=s$).

Credit: Problems 2, 8, and 9 are from $[\mathrm{R}]$ and the rest from [DF].

