Math 500: HW 4 due Friday, September 15, 2023.

Webpage: http://dunfield.info/500

Office hours: Wednesdays 1:30–2:30pm and Thursdays 2:00–3:00pm; additional times possible by appointment.

Textbook: Dummit and Foote, *Abstract Algebra*, 3rd edition.

Suplemental text: Charles Rezk, Lecture Notes for Math 500, posted on our course webpage.

- 1. Exhibit all 2 and 3 Sylow subgroups of $S_3 \times S_3$ and D_{12} .
- 2. Show that if |G| = 105, then *G* has a normal cyclic subgroup of index 3.
- 3. Show that if |G| = 315 such that *G* has a normal 3-Sylow subgroup, then its center Z_G contains a 3-Sylow subgroup. Deduce that *G* is abelian.
- 4. Let $P \in \text{Syl}_p(H)$, and $H \leq K$. If $P \leq H$ and $H \leq K$, prove that P is normal in K. Deduce that if $P \in \text{Syl}_p(G)$ and $H = N_G(P)$, then $N_G(H) = H$ (i.e., normalizers of Sylow p-subgroups are self normalizing.)
- 5. Let *P* be a normal Sylow *p*-subgroup of *G*, and $H \leq G$. Prove that $P \cap H$ is the unique Sylow *p*-subgroup of *H*.
- 6. Let $P \in \text{Syl}_p(G)$ and assume $N \leq G$. Use the conjugacy part of Sylow's theorem to prove that $P \cap N \in \text{Syl}_p(N)$. Deduce that $PN/N \in \text{Syl}_p(G/N)$.
- 7. Let *A*, *B* be finite groups, and *p* a prime number which divides the orders of both. Show that every *p*-Sylow subgroup of $A \times B$ is of the form $P \times Q$, with $P \in \text{Syl}_p(A)$ and $Q \in \text{Syl}_p(B)$. Conclude that $n_p(A \times B) = n_p(A) \times n_p(B)$. Note: See Chapter 5.1 of [DF] for background on direct products.
- 8. Show that every finitely generated subgroup of \mathbb{Q} is cyclic.
- 9. Let (P, \leq) be a partially ordered set. Show that (P, \leq) has the ascending chain condition if and only if every non-empty subset $S \subseteq P$ has a maximal element (that is, $\exists m \in S$ such that for all $s \in S$, $m \leq s$ implies m = s).

Credit: Problems 2, 8, and 9 are from [R] and the rest from [DF].