Math 500: HW 3 due Friday, September 8, 2023.

Webpage: http://dunfie1d.info/500
Office hours: Wednesdays 1:30-2:30pm and Thursdays 2:00-3:00pm; additional times possible by appointment.
Textbook: Dummit and Foote, Abstract Algebra, 3rd edition.
Suplemental text: Charles Rezk, Lecture Notes for Math 500, posted on our course webpage.

1. Suppose $p, m, a \in \mathbb{Z}_{>0}$ with p prime. In this problem, you will show $\binom{p^{a} m}{p^{a}} \equiv m \bmod p$ using the Orbit Stabilizer Theorem. Consider the left action of $G=C_{p^{a}}=\langle r\rangle$ on $X=\left\{1,2, \ldots, p^{a} m\right\}$ defined by setting $r \cdot k$ to be $k+m\left(\bmod p^{a} m\right)$. (If you view the points of X as arranged evenly along a circle, then r is rotation by $2 \pi / p^{a}$.) Now let Y be the collection of all unordered subsets of X of size p^{a}, so that $|Y|=\binom{p^{a} m}{p^{a}}$. Use the induced action of G on Y to prove $|Y| \equiv m \bmod p$.
2. A subgroup $H \leq S_{n}$ of a symmetric group is said to be transitive if the evident action by H on $X=\{1, \ldots, n\}$ is a transitive action. Determine all transitive subgroups of S_{4}. You do not need to give a detailed proof that the list is complete.
3. Let G be a finite group of order $n=|G|$, and suppose there exists a minimal non-trivial subgroup, i.e., a subgroup $\{e\} \neq M \leq G$ such that $M \leq H$ for any $H \leq G$ with $H \neq\{e\}$. Show that G is not isomorphic to any subgroup of S_{n-1}. (Hint: Orbit Stabilizer Theorem.) Use this to show that the quaternion group of order 8 is not isomorphic to a subgroup of S_{7}.
4. Find all conjugacy classes and their sizes in the groups: D_{8}, Q_{8}, A_{4}.
5. Find all finite groups which have exactly two conjugacy classes. (The conjugacy class of the identity element counts as one of these.)
6. If G is a finite group of odd order, show that for $x \in G \backslash\{e\}$, the elements x and x^{-1} are not conjugate.
7. Consider $G^{\prime}=G L_{2}\left(\mathbb{F}_{3}\right)$, and consider the elements

$$
A:=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad B:=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad C:=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right] .
$$

Let $X=\{\{ \pm A\},\{ \pm B\},\{ \pm C\}\}$, a set of subsets of G^{\prime}. Show that conjugation induces an action by G^{\prime} on X, and that this action is described by a surjective homomorphism $\phi: G^{\prime} \rightarrow \operatorname{Sym}(X)$. Finally, identify $\operatorname{Ker}(\phi)$. (Hint: using Problem 1 on HW 2, it should be easy to understand what happens when G^{\prime} is replaced by the subgroup $G=S L_{2}\left(\mathbb{F}_{3}\right)$.)
8. Show that $\left|\operatorname{Aut}\left(Q_{8}\right)\right| \leq 24$, by constraining the possible images of i, j under an automorphism. Then identify $\operatorname{Aut}\left(Q_{8}\right)$ using that Q_{8} is isomorphic to a normal subgroup of $G L_{2}\left(\mathbb{F}_{3}\right)$. Determine $\operatorname{Inn}\left(Q_{8}\right)$ and $\operatorname{Out}\left(Q_{8}\right)$.

Credit: Problems 4, 5, 6, and 8 are from [DF] and Problems 2, 3, and 7 from [R].

