1. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.

as needed.

(a) Use Galois theory to prove that $\alpha = \sqrt{3} + \sqrt{7}$ is a primitive element for K/\mathbb{Q} , i.e. that $K = \mathbb{Q}(\alpha)$. **(6 points)**

Since none of 3, 7, and 21 are squares in Q, by HW we know $6al(K/Q) \cong C_2 \times C_2$ gum by $T: \sqrt{3} \to -\sqrt{3}$ and $6: \sqrt{3} \to \sqrt{3}$. Let $H \subseteq Gal(K/Q)$ be the subgpoor for $Q(\alpha)$ under the fund. than. As $T(\alpha) = -\sqrt{3} + \sqrt{7} \neq \alpha$ and $T(\alpha) = \sqrt{3} + \sqrt{7} \neq \alpha$ and $T(\alpha) = \sqrt{3} + \sqrt{7} \neq \alpha$ and $T(\alpha) = \sqrt{3} + \sqrt{7} \neq \alpha$ we have none of G, G, G are in G. So G we have none of G, G, G are in G. So G are in G are G and G are G are G and G are G and G are G and G are G and G are G are G and G are G are G are G are G are G and G are G and G are G and G are G a

(b) Consider the \mathbb{Q} -linear transformation $T: K \to K$ where $T(\beta) = \alpha \cdot \beta$. Give the matrix A of T with respect to the \mathbb{Q} -basis $\{1, \sqrt{3}, \sqrt{7}, \sqrt{21}\}$ of K. (2 **points**)

(c) Describe how you could use the marix A to find express α^{-1} as $a+b\sqrt{3}+c\sqrt{7}+d\sqrt{21}$, where $a,b,c,d\in\mathbb{Q}$. (2 points)

2. Let $\mathbb{Q} \subset K \subset \mathbb{C}$, where K/\mathbb{Q} is a finite Galois extension. Let $\tau \in \operatorname{Aut}(\mathbb{C})$ by complex conjugation. Prove or disprove: $\tau(K) = K$ and so τ gives an element of $Gal(K/\mathbb{Q})$. (8 points)

Claim: T(K) = K.

Know K must be the splitting field of some Separable $f(x) \in Q(x)$. In particular,

K = Q(x1,..., xx) where the d; are all the

roots of f. For each i, we have $\int_{0}^{as} f \in Q[X]$ $0 = T(f(\alpha_{i})) = f(T(\alpha_{i}))$

and so T(x:) is some other of. In particular, sancte & gives a bijectron of gains age (the inverse is t it self). In

Thus $T(K) = Q(T(\alpha_i), ..., T(\alpha_K)) = K$

as desired.

- 3. Let R be a principal ideal domain.
 - (a) If α is an irreducible element of R, prove that the ideal $I = (\alpha)$ is maximal. (4 points) Suppose J is an ideal with $I \subseteq J \subseteq R$. As R is a PIP, $J = (\beta)$. As $\alpha \in J$, have $\alpha = \gamma \beta$. As α is irred, one of γ , γ is a unit. If γ is unit, then γ is a unit. If γ is unit, then γ is a unit, γ is a unit, γ is a unit, γ is a unit. If γ is a unit, γ is a unit, γ is a unit.
 - (b) Prove that any proper ideal I of R is contained in a maximal ideal. (6 points)

Suppose $I=(\alpha)$ and $\alpha=8\alpha_1\cdot\alpha_2\cdots\alpha_K$ where δ is a unit and the α_i are irred. Must have at least one α_i or else I=R. Then $J=(\alpha_1)$ is maximal by (α) and contains I since $\alpha=\alpha_i(stuff)$.

(c) Does (a) remain true if R is just a UFD? Prove your answer. (2 points)

No. Q[x,y] is a UFD where x is irred to but Q[x,y]/ $(x) \cong Q[y]$ is not a field.

- 4. Consider the cyclotomic field $K = \mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/5}$. We know K/\mathbb{Q} is Galois with group $G \cong (\mathbb{Z}/5\mathbb{Z})^{\times}$.
 - (a) What is the minimal polynomial of ζ over \mathbb{Q} ? (2 points)

The prob reminds us that
$$[K:Q]=|G|=4=9(5)$$

(b) How many subfields L of K are there with $[L:\mathbb{Q}]=2$? (2 points)

has a single nontrivial subgp (> Cz). So exactly one such L.

(c) Let $\sigma \in G$ send $\zeta \mapsto \zeta^2$. Find the corresponding fixed field $K_{\langle \sigma \rangle}$. (4 **points**)

Note
$$|6| = 4$$
 since $S \rightarrow S^2 \rightarrow S^4 \rightarrow S^8 = S^3 \rightarrow S$ and $35, 5^2, 5^3, 5^4$ are distinct extelts of K .
In part, $\langle \sigma \rangle = G$ and so $K_{\langle S \rangle} = Q$.

(d) Find the minimal polynomial of $\zeta^2 + \zeta^3$ over \mathbb{Q} . Your answer should not involve ζ . (4 points)

Applying
$$\sigma$$
, we see $6(\alpha) = 5^4 + 5 = :\beta$ and $\sigma(\beta) = \alpha$.

$$M_{\alpha,Q}(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta) + x + \alpha \beta$$

So
$$M_{\alpha,Q}(x) = x^2 + \chi - 1$$
.

- 5. Let F be a field of characteristic 0. Let K be the splitting field of an irreducible *cubic* $f(x) \in F[x]$. Let $\alpha_1, \alpha_2, \alpha_3 \in K$ be the roots of f, and suppose that G = Gal(K/F) is all of S_3 .
 - (a) Show that $F = \mathbb{Q}$ and $f(x) = x^3 + x + 1$ is an example of this situation, i.e. that f is irreducible in $\mathbb{Q}[x]$ and $G = S_3$. (4 points)

fis irred as $f \in \mathbb{F}_2[x]$ has no roots in \mathbb{F}_2 and $\deg \leq 3$. As $f'(x) = 3x^2 + 1$ has no real roots, f has only one real root. In part, complex conj gives an elt of G of order 2. As G is either G or G, it must be G.

(b) Returning to the general case, for each j find the subgroup of G that corresponds to $F(\alpha_j)$. (2 points)

 $F(\alpha_1) \longleftrightarrow \langle (23) \rangle$ $F(\alpha_3) \longleftrightarrow \langle (12) \rangle$ $F(\alpha_2) \longleftrightarrow \langle (13) \rangle$

(c) Prove that $F(\alpha_1) \cap F(\alpha_2) = F$. (2 points)

The subgp of G coor to $F(x_1) \cap F(x_2)$ is $\langle (23), (13) \rangle$ which contains $(123) = (23) \cdot (13)$ and hence is all of G. Thus $F(x_1) \cap F(x_2) = F$. by the Fund Thm.

(d) Prove that $\operatorname{Aut}(F(\alpha_1)/F)$ is trivial. **(4 points)**

If $6 \in \text{Aut}(F(x_1)/F)$, then $6(x_1)$ is one of $3\alpha_1, \alpha_2, \alpha_3$? since $f \in F[x]$. By (C), (Exals $\alpha_2 \notin F(\alpha_1)$ and the same follows for α_3 . So $6(x_1) = \alpha_1$ and 6 = 10 yenerates $F(\alpha_1)$ we have 6 = 10 $F(\alpha_1)$

(e) Consider $\beta = \alpha_1 \alpha_2^2 + \alpha_2 \alpha_3^2 + \alpha_3 \alpha_1^2$. Prove that $K \neq F(\beta)$. (2 points)

Note 6 = (123) fixes β since $6(\alpha_1\alpha_2^2 + \alpha_2\alpha_3^2 + \alpha_3\alpha_1^2) = \alpha_2\alpha_3^2 + \alpha_3\alpha_1^2 + \alpha_1\alpha_2^2$. So $\beta \in K_{(6)}$ where $[K: K_{(6)}] = |\langle 6 \rangle| = 3$. So $[K:F] \ge 3$.

- 6. Consider the plane curve $X = \mathbf{V}(x^2 y^2 1) \subset \mathbb{R}^2$.
 - (a) Prove that X is smooth, and draw a picture of it. (4 points)

$$\nabla f = (2x, -2y)$$
 and so $\nabla f = 0 = (x,y) = (0,0)$ which is not in X. So X is smooth: y

$$X = \pm \sqrt{1 + \gamma^2}$$

(b) Let \overline{X} be the corresponding curve in $\mathbb{P}^2_{\mathbb{R}}$. Find the defining equation for \overline{X} in $\mathbb{R}[x,y,z]$, and find all the points in $\overline{X} - X$, i.e. all points at infinity. (2 points)

$$g = \chi^{2} - y^{2} - z^{2} \qquad \overline{\chi} \cap \mathbb{P}_{\infty}^{1} = \{(x: y: 0) \mid g(x, y, 0) = 0\}$$

$$= \{(x: y: 0) \mid \chi^{2} = y^{2} \Rightarrow \chi = \pm y \} = \{(1: 1: 0), (1: -1: 0)\}$$

(c) Explain why your answers in (a) and (b) are consistent with the view that $\mathbb{P}^2_{\mathbb{R}}$ is \mathbb{R}^2 plus one point for each family of parallel lines in \mathbb{R}^2 . (2 points)

The asymptotes of the hyp. X coor to the pts at infility

(d) What is the topology of \overline{X} ? What about if we replace with \mathbb{R} with \mathbb{C} ? You do not need to justify your answer, but should draw pictures. (2 points)

like any smooth

- 7. Let V be the plane curve $\mathbf{V}(x^2-y^2-1)\subset\mathbb{C}^2$, which is irreducible. Let $K=\mathbb{C}(V)$ be the function field.
 - (a) Consider the rational function on V given by

$$f = \frac{x^2 - y - 1}{y - 1} \in K$$

Prove that dom(f) = V, even though the denominator vanishes at $(\sqrt{2},1) \in V$. (4 points) In C[V], have $\chi^2 = \chi^2 + 1$, so can rewrite the numerator as $\chi^2 - \chi = \chi(\gamma - 1)$. So $f = \chi_1$ is another valid expression for f and so dom(f) = V.

(b) Consider h(x,y) = x in $\mathbb{C}[V]$ as a map $V \to \mathbb{C}$. Let $F = \mathbb{C}(\mathbb{C}) = \mathbb{C}(t)$, and consider $h^* \colon F \to K$ be the induced homomorphism of fields. As this is 1-1, identify F with its image under h^* . Describe the extension K/F as F[u]/(p(u)) for some *irreducible* polynomial $p(u) \in F[u]$. (6 **points**)

As $h^*(t) = x$, have $h^*(C(t)) = C(x)$ inside K. Now K'(t) = x, K'(t) = x,

(c) Is K/F Galois? If it is, describe how each element of Gal(K/F) acts on K. (2 points) V_{es} since [K:F]=2. $Gal(K/F) \stackrel{\sim}{=} C_2$ generated by $6:9 \stackrel{\sim}{=} -Y$.

- 8. Throughout, let k be an algebraically closed field.
 - (a) Suppose $V_1, V_2 \subset k^n$ are affine varieties defined by $V_i = \mathbf{V}(I_i)$. Prove directly from the definitions that $V_1 \cup V_2 = \mathbf{V}(I_1 \cap I_2)$ (4 **points**)
 - (\leq): If $p \in V_1 \cup V_2$ and $f \in I_1 \cap I_2$ then p in one V_i . Since $V_i = V(I_i)$ and $f \in I_i$ we have f(p) = 0 $\Rightarrow p \in V(I_1 \cap I_2)$.
 - (2) Suppose $P \in V(I, \Lambda I_2)$ is not in VPV_2 $V_1 \cup V_2$. Pick $f_i \in I_i$ with $f_i(p) \neq 0$. Then $f_i f_2 \in I_i \cap I_2$ since the I_i are ideals, but $(f_i f_2)(p) = f_i(p) \cdot f_2(p) \neq 0$, a contrad. So $P \in V_1 \cup V_2$.
 - (b) Let J_1 and J_2 be radical ideals in $k[x_1, ..., x_n]$. Prove that $I = J_1 \cap J_2$ is also a radical ideal, i.e. that $f^n \in I \Rightarrow f \in I$. (2 points)

Suppose $f^e I$ Then for each i, that have $f^e J_i \Rightarrow f \in J_i$ as J_i is radical. So $f \in J_i \cap J_2 = I$.

(c) Show that $I(V_1 \cup V_2) = I(V_1) \cap I(V_2)$. (4 points) Julistelleusatt

Set $I_i = I(V_i)$ so that $V_i = V(I_i)$ as "V(I(U)) = V". By (a), have $V_1 \cup V_2 = V(I_1 \cap I_2)$. By the Null satz, $I(V_1 \cup V_2) = I(V_1 \cap I_2) = I(V_1 \cap I_2) = I(V_1 \cap I_2) = I(V_1 \cap I_2)$ as desired.

So $I(V_1 \cup V_2) = I(V_1) \cap I(V_2)$ as desired.