1. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.

(a) Use Galois theory to prove that $\alpha = \sqrt{3} + \sqrt{7}$ is a primitive element for K/\mathbb{Q}, i.e. that $K = \mathbb{Q}(\alpha)$. \hfill (6 points)

(b) Consider the \mathbb{Q}-linear transformation $T: K \to K$ where $T(\beta) = \alpha \cdot \beta$. Give the matrix A of T with respect to the \mathbb{Q}-basis $\{1, \sqrt{3}, \sqrt{7}, \sqrt{21}\}$ of K. \hfill (2 points)

(c) Describe how you could use the matrix A to find express α^{-1} as $a + b\sqrt{3} + c\sqrt{7} + d\sqrt{21}$, where $a, b, c, d \in \mathbb{Q}$. \hfill (2 points)
2. Let $\mathbb{Q} \subset K \subset \mathbb{C}$, where K/\mathbb{Q} is a finite Galois extension. Let $\tau \in \text{Aut}(\mathbb{C})$ by complex conjugation. Prove or disprove: $\tau(K) = K$ and so τ gives an element of $\text{Gal}(K/\mathbb{Q})$.

(8 points)
3. Let R be a principal ideal domain.

(a) If α is an irreducible element of R, prove that the ideal $I = (\alpha)$ is maximal. \hspace{1cm} (4 \text{ points})

(b) Prove that any proper ideal I of R is contained in a maximal ideal. \hspace{1cm} (6 \text{ points})

(c) Does (a) remain true if R is just a UFD? Prove your answer. \hspace{1cm} (2 \text{ points})
4. Consider the cyclotomic field $K = \mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i / 5}$. We know K/\mathbb{Q} is Galois with group $G \cong (\mathbb{Z}/5\mathbb{Z})^\times$.

(a) What is the minimal polynomial of ζ over \mathbb{Q}? (2 points)

(b) How many subfields L of K are there with $[L : \mathbb{Q}] = 2$? (2 points)

(c) Let $\sigma \in G$ send $\zeta \mapsto \zeta^2$. Find the corresponding fixed field $K_{(\sigma)}$. (4 points)

(d) Find the minimal polynomial of $\zeta^2 + \zeta^3$ over \mathbb{Q}. Your answer should not involve ζ. (4 points)
5. Let F be a field of characteristic 0. Let K be the splitting field of an irreducible cubic $f(x) \in F[x]$. Let $\alpha_1, \alpha_2, \alpha_3 \in K$ be the roots of f, and suppose that $G = \text{Gal}(K/F)$ is all of S_3.

(a) Show that $F = \mathbb{Q}$ and $f(x) = x^3 + x + 1$ is an example of this situation, i.e. that f is irreducible in $\mathbb{Q}[x]$ and $G = S_3$. (4 points)

(b) Returning to the general case, for each j find the subgroup of G that corresponds to $F(\alpha_j)$. (2 points)

(c) Prove that $F(\alpha_1) \cap F(\alpha_2) = F$. (2 points)

(d) Prove that $\text{Aut}(F(\alpha_1)/F)$ is trivial. (4 points)

(e) Consider $\beta = \alpha_1\alpha_2^2 + \alpha_2\alpha_3^2 + \alpha_3\alpha_1^2$. Prove that $K \neq F(\beta)$. (2 points)
6. Consider the plane curve $X = V(x^2 - y^2 - 1) \subset \mathbb{R}^2$.

 (a) Prove that X is smooth, and draw a picture of it. \textbf{(4 points)}

 (b) Let \overline{X} be the corresponding curve in $\mathbb{P}^2_{\mathbb{R}}$. Find the defining equation for \overline{X} in $\mathbb{R}[x, y, z]$, and find all the points in $\overline{X} - X$, i.e. all points at infinity. \textbf{(2 points)}

 (c) Explain why your answers in (a) and (b) are consistent with the view that $\mathbb{P}^2_{\mathbb{R}}$ is \mathbb{R}^2 plus one point for each family of parallel lines in \mathbb{R}^2. \textbf{(2 points)}

 (d) What is the topology of \overline{X}? What about if we replace with \mathbb{R} with \mathbb{C}? You do not need to justify your answer, but should draw pictures. \textbf{(2 points)}
7. Let V be the plane curve $V(x^2 - y^2 - 1) \subset \mathbb{C}^2$, which is irreducible. Let $K = \mathbb{C}(V)$ be the function field.

(a) Consider the rational function on V given by

$$f = \frac{x^2 - y - 1}{y - 1} \in K$$

Prove that $\text{dom}(f) = V$, even though the denominator vanishes at $(\sqrt{2}, 1) \in V$. (4 points)

(b) Consider $h(x, y) = x$ in $\mathbb{C}[V]$ as a map $V \to \mathbb{C}$. Let $F = \mathbb{C}(\mathbb{C}) = \mathbb{C}(t)$, and consider $h^*: F \to K$ be the induced homomorphism of fields. As this is 1-1, identify F with its image under h^*. Describe the extension K/F as $F[u]/(p(u))$ for some irreducible polynomial $p(u) \in F[u]$. (6 points)

(c) Is K/F Galois? If it is, describe how each element of $\text{Gal}(K/F)$ acts on K. (2 points)
8. Throughout, let \(k \) be an algebraically closed field.

(a) Suppose \(V_1, V_2 \subset k^n \) are affine varieties defined by \(V_i = V(I_i) \). Prove directly from the definitions that \(V_1 \cup V_2 = V(I_1 \cap I_2) \) (4 points)

(b) Let \(J_1 \) and \(J_2 \) be radical ideals in \(k[x_1, \ldots, x_n] \). Prove that \(I = J_1 \cap J_2 \) is also a radical ideal, i.e. that \(f^n \in I \Rightarrow f \in I \). (2 points)

(c) Show that \(I(V_1 \cup V_2) = I(V_1) \cap I(V_2) \). (4 points)