Lecture 3: Subspaces ($\$ 1.3$ of $[F I S]$)
Previously on Math 4/6...
A vector space over \mathbb{R} is a set V with two operations (vector addition and scala mult) satisfying: (1-2) vee, addition is commutative and associtive.
(3) There is a zen vector. (4) Additive inverses exist.
(5) $1 v=v$
(6) Scaler mult is assoc.
(7-8) Distributive properties.
Ex: $\mathbb{R}^{n}, \operatorname{Mat}_{m \times n}(\mathbb{R})$, spaces of functions...

Back to \mathbb{R}^{3} : Other basic objects: lines and planes.

Today: Analog of such in a general vector space.

Suppose W is a plane in \mathbb{R}^{3} containing O, and w_{1}, w_{2} are vectors in W. Then

$$
w_{1}+w_{2} \text { is also in } W .
$$

So is a w, for any a in \mathbb{R}.
Note: Important that $W_{\text {contains }}$ o here as otherwise these props need not hold.

Def: Suppose V is a vector
 space over \mathbb{R}. A subset W of V is a subspace if (a) O is in W
(b) Far all w_{1}, w_{2} in W, the sum $w_{1}+w_{2}$ is abs in W.
(c) Fa all c in \mathbb{R} and w in W, $c W$ is also in W.
$\left[\begin{array}{r}\text { Can replace@ with requirement that Wis } \\ \text { nonempty. }\end{array}\right]$

Ex: Some subspaces of \mathbb{R}^{3} :
(1) \mathbb{R}^{3}
(2) $\{0\}$
(3) $\{(x, 0,0)$ for x in $\mathbb{R}\}$
(4) $\{(x,-x, 2 x)\}$
(5) $\{(x, y, 0)\}$
(6) $\{x+y+z=0\}=\{s(1,0,-1)+t(1,-1,0)$ for s, t in $\mathbb{R}\}$

Ex: In any rector space V, the subsets $\{0\}$ and V are subspaces.

The: Suppose W is a subspace of a vector space V. Then W is itself a vector space under the two operations in herited from V.

Proof: First by requirements (b) and (c) we do have two ops taking values in W. of the 8 conditions, 1-2 and 5-8 are immediate from the fact that V itself is a rector space. Moreen, (3) follows from subspace cond. (a).

Finally, for (4) given w in W we know there is a v in V such that $v+w=0$.

Issue: Does V have to be in W?
Yes, since we can take $v=(-1) \mathrm{w}$ which is in
W by (C). Check: $v+(-1) v \stackrel{(5)}{=} \mid v+(-1) v \stackrel{(8)}{=}(1-1) v$

$$
=O V=O
$$

\uparrow Thu of last time.
So W with these ops satisfies (1-8 and so is a vector space.

Non-Ex: $W=\left\{\left(w_{1}, w_{2}\right)\right.$ with $\left.w_{i} \geq 0\right\}$ Proof end symbol in \mathbb{R}^{2} is not a subspace. ($=$ Q.E.D.)

Satisfies (a) and (b) but not (c).
In proof of the everything works except (4).
$\left[\begin{array}{c}\text { Discuss difference with book's treatment } \\ \text { of subspaces. }\end{array}\right]$

Ex: $\mathcal{F}=\{$ cont. fins $[-1,1]$ to $\mathbb{R}\}$

$$
W=\{f \text { in } \exists \text { where } f(0)=0\}
$$

So x^{2} in W but $\cos x$ is not.

Wis a subspace since
(a) The O in \mathcal{F} is f_{0} where $f_{0}(x)=0$ for all x. which is in W.
(b) If f, g in W then $(f+g)(0)=$ $f(0)+g(0)=0+0=0$. So $f+g$ in W.
(c) If c in \mathbb{R} and f in W then $(c f)(0)=$ $c f(0)=0$. So $\subset f$ in W.

Non Ex: \mathcal{F} same, $W=\{f$ in \exists where $f(0)=1\}$ Fails all 3 req's!

Ex: A in $\operatorname{Mat}_{n \times n}(\mathbb{R})$

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \ddots & \\
\vdots & & \cdots & A_{n n}
\end{array}\right)=\left(A_{i j}\right)
$$

Transpose: A^{t} where $A_{i j}^{t}=A_{j i}$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{t}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)^{t}=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 6 \\
3 & 6 & 9
\end{array}\right)
$$

[Also woks for non-square matrices.]
A matrix A in $\operatorname{Mat}_{n \times n}(\mathbb{R})$ is symmetric if $A=A^{t}$.
Ex: $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$ but neither of the two examples above.

Thu: The subset of symmetric matrices in Mat nan (\mathbb{R}) is a subspace.

Proof: The O in $M_{\text {latinx }}(\mathbb{R})$ is $\left(\begin{array}{ccc}0 & \cdots & 0 \\ 0 & \ddots & 0\end{array}\right)$ which is symmetricso@holds.
For (b) and (C), first show that for all A, B in $\operatorname{Mat}_{n \times n}(\mathbb{R})$ and a, b in \mathbb{R} one has

$$
(a A+b B)^{t}=a\left(A^{t}\right)+b\left(B^{t}\right) .
$$

Now if A, B are sym, then

$$
(A+B)^{t}=A^{t}+B^{t}=A+B
$$

and so $A+B$ is abs sym, proving (b).
The argument for (C) is similar.
Next time: Linear combinations and linear equations

