1. Consider the matrix
$$A = \begin{pmatrix} 3 & 1 & -5 & 0 & 5 \\ 2 & 1 & -3 & 1 & 7 \\ 1 & 1 & -1 & 1 & 6 \end{pmatrix}$$
 which is row equivalent to $B = \begin{pmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 1 & 5 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$.

(a) What is the relationship between the solution sets to $\mathcal{LS}(A)$ and $\mathcal{LS}(B)$? (1 point)

As A and B are row equivalent, the two solution sets are the same

(b) Find a matrix *C* that is row equivalent to *A* and is in reduced row echelon form. Label any row operations you preform. **(2 points)**

A my B my
$$\begin{pmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix} = C$$

(c) Parameterize all solutions to the linear system LS(A). (3 points) This is the same as solving ZS(C) which has one free variable corr. to the 3^{rd} column. Our lyns are

 $\chi_1 - 2\chi_3 = 1$ $\chi_2 + \chi_3 = 2$ and hence our param

$$\chi_4 = 3$$

Solutions are {(1+2t, 2-t, t, 3) | tell.

(d) Find the dimension of the rowspace $\mathcal{R}(A)$ of A. (2 points)

Know R(A) = R(C). As C is in RREF, a basis for C is the set of all nonzero rows. So dim R(A) = 3.

9 am version

1. Consider the matrix
$$A = \begin{pmatrix} 3 & 1 & -5 & 0 & 5 \\ 2 & 1 & -3 & 1 & 7 \\ 1 & 1 & -1 & 1 & 6 \end{pmatrix}$$
 which is row equivalent to $B = \begin{pmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 1 & 5 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$.

(a) What is the relationship between the solution sets to $\mathcal{LS}(A)$ and $\mathcal{LS}(B)$? (1 point)

As A and B are row equivalent, the two solution sets are the same

(b) Find a matrix *C* that is row equivalent to *A* and is in reduced row echelon form. Label any row operations you preform. **(2 points)**

$$A \xrightarrow{\text{row}} B \xrightarrow{-R_3 + R_2} \begin{pmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix} = C$$

(c) Parameterize all solutions to the linear system LS(A). (3 points) This is the Same as solving ZS(C) which has one free variable corr. to the 3^{rd} column. Our egns are $\chi_1 -2\chi_3 = 1$ $\chi_2 + \chi_3 = 2$ and hence our param. $\chi_4 = 3$

solutions are {(1+2t, 2-t, t, 3) | t∈R}

(d) Find the dimension of the nullspace $\mathcal{N}(A)$ of A. (2 points)

Know N(A) = N(C) = solins to ZS(C::).

As Cisin RREF, dim N(c) = # of non pivot = 2

So $\dim \mathcal{N}(A) = 2$ as well.

10 am version

- **2.** Let *W* be a subset of a vector space *V*. We say that *W* is *awesome* when both:
 - (i) The subset W is nonempty.
 - (ii) For all w_1 and w_2 in W and $a \in \mathbb{R}$, the linear combination $aw_1 + w_2$ is also in W.
 - (a) Prove that if W is a subspace then it is awesome.

As Wis a subspace, it contains the O vector; in particular, it is nonempty and so satisfies (i).

As a subspace, Wis closed under addition and scalar mult. So if w, we wand a & R we have aw, & W and hence aw, + we is in W.

So W has (ii) as well and hence is a we some.

(b) Prove that if W is a we some then it is a subspace.

As W is nonempty, prck $w_i \in W$. By (ii), we have $(-1)w_1 + w_1 = 0_V$ is in W_i . W is closed under addition as if $w_1, w_2 \in W$ we can take a = 1 in (ii) to get

I'W, $+W_2 = W_1 + W_2$ is in W: Finally, W is closed under scalar mult. since given $W_1 \in W$ and $\alpha \in \mathbb{R}$ we apply (ii) with $W_2 = O_V$ to learn $\alpha \cdot W_1 + O_V = \alpha W_1$ is in W. So W is a subspace as well as being awasome.

- **3.** Let *S* in $Mat_{2\times 2}(\mathbb{R})$ be the subspace of symmetric matrices, i.e., those whose transpose A^t is equal to A.
 - (a) Give an explicit basis for S, carefully justifying your answer.

Claim:
$$\beta = \left\{ A = \begin{pmatrix} 10 \\ 00 \end{pmatrix}, B = \begin{pmatrix} 00 \\ 01 \end{pmatrix}, C = \begin{pmatrix} 01 \\ 10 \end{pmatrix} \right\}$$
 is a basis for S.

As
$$aA + bB + cC = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$$
 and 0 in $Mat_{2+2}(R)$ is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

this implies a=b=c=0. So B is linearly indep.

Span: Suppose
$$M = \begin{pmatrix} u \vee \\ \times \gamma \end{pmatrix}$$
 is in S. As $M^t = \begin{pmatrix} u \times \\ \vee \gamma \end{pmatrix} = M$ we have $x = V$ and $M = \begin{pmatrix} u \vee \\ \vee \gamma \end{pmatrix}$. Then M is in span (β) with

As B is lin indep and spans S it is a basis for S.

(b) What is the dimension of *S* and why?

$$\dim S = \# \text{ any } = \#\beta = 3$$

4. Suppose $\{w_1, w_2\}$ are linearly independent vectors in a vector space V. For v in V, prove that if $\{v, w_1, w_2\}$ is linearly dependent then v is in $\text{span}(w_1, w_2)$.

Suppose aov+a,w,+azwz=0 with some a; ≠0.

If $a_0 = 0$, then $a_1w_1 + a_2w_2 = 0$ which forces $a_1 = a_2 = 0$ as $\frac{1}{2}w_1, w_2\frac{1}{2}$ is linearly indep. But then all $a_i = 0$, contradicting our assumption. So must

have $a_0 \neq 0$. Then $v = -\frac{a_1}{a_0} w_1 - \frac{a_2}{a_0} w_2$

and so $v \in span(w_1, w_2)$ as required.

- **5.** Suppose V is a vector space where dim V=2.
 - (a) For any subspace $W \subset V$, what are the possibilities for dim W? (2 points)

As $W \subseteq V$, we know dim $W \subseteq \dim V$. As O is the minimum possible dimension for a vectors pace, we have 3 possibilities for dim $W: \{0, 1, 2\}$

(b) Suppose $W_1 \subset W_2 \subset W_3 \subset W_4$ are all subspaces of V. Prove that at least two of W_1, W_2, W_3 and W_4 are the same. Hint: Use part (a). **(5 points)**

By (a), there are 3 possible values for each dim Wi. As there are 4 subspaces Wi, at least one value of dim Wi must repeat.

Thus, there exists i < j with dim Wi = dim Wj.

As $W_i \subseteq W_j$, the fact that they have the same dimension implies $W_i = W_j$ as desired.

Note: The fact that $W_i \subseteq W_j$ is crucial here. After all, \mathbb{R}^2 contains infinitely many subspaces of dimension 1.

- (1 point each) 6. Circle true or false as appropriate; you do not need to provide any justification. (a) If $A \in Mat_{3\times 3}(\mathbb{R})$ is row equivalent to a matrix in RREF that has no zero false true rows then the linear system $\mathcal{LS}(A)$ is consistent. (b) If $\{u, v, w\}$ is a basis for \mathbb{R}^3 then $\{u - v, v - w, w - u\}$ is also a basis false true for \mathbb{R}^3 . (c) The set $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ is a subspace of \mathbb{R}^3 . false (d) The elements $f(t) = \sin^2(t)$, $g(t) = \cos^2(t)$ and h(t) = 1 are linearly true independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$. false (e) Suppose a linear system with 4 variables and 6 equations has (1, 2, 0, 1)true and (3,0,1,5) as solutions. Then the total number of solutions to this
 - system is finite.

(f) The set $\{a \sin(t) + b \cos(t) \mid a, b \in \mathbb{R}\}\$ is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

- false
- (g) With the terminology of Problem 2, if a subset W of a vector space V is awesome then it is a subspace.

- 6. Circle true or false as appropriate; you do not need to provide any justification.
- false
- (a) If $A \in \text{Mat}_{3\times 3}(\mathbb{R})$ is row equivalent to a matrix in RREF that has no zero rows then the linear system $\mathcal{LS}(A)$ is inconsistent.

(1 point each)

(b) If $\{u, v, w\}$ is a basis for \mathbb{R}^3 then $\{u - v, v - w, w - u\}$ is also a basis for \mathbb{R}^3 .

(c) The set $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}$ is a subspace of \mathbb{R}^3 .

(d) The elements $f(t) = \sin^2(t)$, $g(t) = \cos^2(t)$ and h(t) = 1 are linearly dependent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

(e) The set $\{ae^t + be^{-t} \mid a, b \in \mathbb{R}\}$ is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

(f) Suppose a linear system with 4 variables and 6 equations has (1, 2, 0, 1) and (3,0,1,5) as solutions. Then the total number of solutions to this system is finite.

(g) With the terminology of Problem 2, if a subset W of a vector space V is awesome then it is a subspace.

