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1. Consider the matrix A=| 2 1 -3 1 7 | whichisrow equivalenttoB=| 0 1 1 1 5 |.
11 -116 00 013

(a) What is the relationship between the solution sets to £S(A) and £LS(B)? (1 point)
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(b) Find a matrix C that is row equivalent to A and is in reduced row echelon form. Label any row
operations you preform. (2 points)
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(c) Parameterize all solutions to the linear system £LS(A). (3 points) '7th~ s 7s M
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(d) Find the dimension of the rowspace R(A) of A. (2 points)
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So dim R (A) =3
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operations you preform. (2 points)
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(c) Parameterize all solutions to the linear system £S(A). (3 points) ’ﬂl 3 (s M
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(d) Find the dimension of the nullspace N (A) of A. (2 points)
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2. Let W be a subset of a vector space V. We say that W is awesome when both:

(i) The subset W is nonempty.

(i) For all w; and w» in W and a € R, the linear combination aw; + w- is also in W.

(a) Prove that if W is a subspace then it is awesome.
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3. Let S in Matyx2 (R) be the subspace of symmetric matrices, i.e., those whose transpose A? is equal to A.

(a) Give an explicit basis for S, carefully justifying your answer.
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(b) What is the dimension of S and why?
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4. Suppose {w;,w,} are linearly independent vectors in a vector space V. For v in V, prove that if
{v,wi,wr} is linearly dependent then v is in span(wy, w»).
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5. Suppose V is a vector space where dimV = 2.

(a) For any subspace W C V, what are the possibilities for dimW? (2 points)
As W< V, we knao dim W = dim |/
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- (b) Suppose W; C W> C W3 C W, are all subspaces of V. Prove that at least two of Wy, W, W3 and Wy are
the same. Hint: Use part (a). (5 points)
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6. Circle true or false as appropriate; you do not need to provide any justification. (1 point each)

(@) If A € Matsx3(R) is row equivalent to a matrix in RREF that has no zero tru% false )
rows then the linear system £S(A) is consistent. N

(b) If {u,v,w} is a basis for R3 then {u — v,v — w,w — u} is also a basis true (false )
for R3. ———
(c) The set {(x,y,z) € R? | x + +z =0} is a subspace of R3. tru_s false
—
(d) The elements f(t) = sin®(t), g(t) = cos?(t) and h(t) = 1 are linearly true @ls?
independent in F (R, R). L—

(e) Suppose a linear system with 4 variables and 6 equations has (1,2,0,1) true (false )
and (3,0,1,5) as solutions. Then the total number of solutions to this —
system is finite.

(f) The set {asin(t) + bcos(t) | a,b € R} is a subspace of F(R, R). true) false

(g) With the terminology of Problem 2, if a subset W of a vector space V is @ false
awesome then it is a subspace.
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(@) If A € Matsx3(R) is row equivalent to a matrix in RREF that has no zero @ false
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