Important note: This assignment is due on Wednesday not Friday.

More important note: This is the last homework assignment of the semester!

Most important note: There will be a combined final exam for sections B13 and C13 of Math 416, which will be held on TBA. Please notify me immediately if you have another exam in that timeslot.

Webpage: http://dunfield.info/416

Office hours: Here is my schedule for the rest of the semester:

Problems:

There is no Problem 1 on this assignment due to instructor error. Remove this, but check numbering of solutions.

2. Let T be a normal operator on a finite-dimensional inner product space V.

(a) Prove that $\mathcal{N}(T) = \mathcal{N}(T^*)$ and $\mathcal{R}(T) = \mathcal{R}(T^*)$.

(b) Prove that the subspaces $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are orthogonal.

(c) Give an example of a (non-normal) linear operator S where $\mathcal{N}(S) \neq \mathcal{N}(S^*)$ and $\mathcal{R}(S) \neq \mathcal{R}(S^*)$.

Hint: Use the following fact that you proved in HW 10: If T is a linear operator on finite-dimensional inner product space V, then $\mathcal{R}(T^*)^\perp = \mathcal{N}(T)$ and $\mathcal{R}(T^*) = \mathcal{N}(T)^\perp$.

3. A matrix $A \in M_{n \times n}(\mathbb{R})$ is Gramian if there is a $B \in M_{n \times n}(\mathbb{R})$ such that $A = B^t B$. Prove that A is Gramian if and only if A is symmetric and all of its eigenvalues are non-negative.

Hint: For (\Leftarrow), note that A is diagonalizable via an orthonormal basis $\{u_1, \ldots, u_n\}$ where u_i is an eigenvector of A with eigenvalue λ_i. Consider the linear operator T on \mathbb{R}^n where $T(u_i) = \sqrt{\lambda_i} u_i$. Now take $B = [T]_{\text{std}}$ and check that $A = B^t B$.

4. Section 6.5 of [FIS], Problem 11.

5. Section 6.5 of [FIS], Problem 17.

6. Section 6.5 of [FIS], Problem 24.

7. Suppose $A \in M_{3 \times 3}(\mathbb{R})$ is an orthogonal matrix with $\det(A) = 1$. (Recall from a prior assignment that any orthogonal matrix has determinant ± 1.) In this problem, you will show L_A is rotation about a line W in \mathbb{R}^3, where W passes through the origin.

(a) First, show that any (real) eigenvalue of A must be ± 1.

(b) Note that A has at least one eigenvalue since its characteristic polynomial $f(t)$ has odd degree and hence at least one real root λ. In this step, you’ll show that 1 is always an eigenvalue. If instead $\lambda = -1$, then $f(t) = (-1 - t)(t^2 + bt + c)$ for some $b, c \in \mathbb{R}$. Use that $\det(A) = 1$ to prove that $c < 0$ and hence by the quadratic formula that $f(t)$ splits...
completely over \mathbb{R}. Now show that the eigenvalues of A are -1 and 1, with algebraic multiplicities 2 and 1 respectively.

(c) Let v_1 be an eigenvector for A with eigenvalue 1, and set $W = \text{span}\{v_1\}$. Prove that L_A preserves W^\perp and acts on it by an orthogonal transformation.

(d) Use Theorem 6.23 of the text to argue that the action of L_A on W^\perp is by a rotation. Hint: If instead the restriction was a reflection, find a basis of \mathbb{R}^3 consisting of eigenvectors for A which shows instead that $\det(A) = -1$.

8. Suppose v_1, \ldots, v_n are vectors in \mathbb{R}^n and let P be the parallelepiped spanned by them. Consider the matrix $G \in M_{n \times n}(\mathbb{R})$ where $G_{ij} = \langle v_i, v_j \rangle$. (As usual, the inner product here is just the ordinary dot product.)

(a) Show that G is Gramian.

(b) Show that $\det(G) \geq 0$.

(c) Show that the unsigned volume of P is $\sqrt{\det(G)}$.

In fact, G is usually called the Gram matrix of these vectors.