
Webpage: http://dunfield.info/416

Office hours: Wednesday 2:30–3:30pm and Thursday 3:00–4:00pm; other times possible by appointment. My office is 378 Altgeld.

Problems:

1. Let \(\mathbb{C} \) denote the field of complex numbers, as discussed in detail in Appendix D of [FIS]. As with any field, we can consider vector spaces, linear transformations, and matrices over \(\mathbb{C} \) rather than over our usual field \(\mathbb{R} \).

 (a) The complex numbers \(\mathbb{C} \) can be viewed as a vector space over either \(\mathbb{C} \) or \(\mathbb{R} \) with the usual scalar multiplication. Prove that \(\mathbb{C} \) has dimension 1 as a vector space over \(\mathbb{C} \) but has dimension 2 as a vector space over \(\mathbb{R} \). In each case, give an explicit basis.

 (b) Since \(\mathbb{R} \) is a subset of \(\mathbb{C} \), if \(V \) is a vector space over \(\mathbb{C} \) then it is also a vector space over \(\mathbb{R} \): just use the same scalar multiplication but restricted to scalars in \(\mathbb{R} \). If \(V \) has dimension \(n \) as a vector space over \(\mathbb{C} \), prove that it has dimension \(2n \) as a vector space over \(\mathbb{R} \). Hint: Use Theorem 2.19 from [FIS] to reduce to the case where \(V \) is just \(\mathbb{C}^n \).

 (c) Diagonalize the following matrices over \(\mathbb{C} \) by giving a \(Q \in M_{2\times2}(\mathbb{C}) \) so that \(Q^{-1}AQ \) is diagonal.

\[
A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}
\]

2. Section 5.1 of [FIS], Problem 1.

3. Section 5.2 of [FIS], Problem 1.

4. Section 5.2 of [FIS], Problem 2, parts (e) and (g).

5. Section 5.2 of [FIS], Problem 3, parts (a) and (d).

6. Prove that similar matrices have the same characteristic polynomial.

7. Section 5.2 of [FIS], Problem 7.

8. If \(A \) is a square matrix prove that \(A \) and \(A^t \) have the same eigenvalues. Do they have the same eigenvectors? Either prove they do, or give a counterexample.

9. Suppose that \(A \) in \(M_{n\times n}(\mathbb{R}) \) has two distinct eigenvalues \(\lambda_1 \) and \(\lambda_2 \), and that \(\dim(E_{\lambda_1}) = n - 1 \). Prove that \(A \) is diagonalizable.

10. Section 5.3 of [FIS], Problem 6. 5th edition changed wording and time period from months to weeks. Copy one version here.