
Webpage: http://dunfield.info/416

Office hours: Wednesday 2:30–3:30pm and Thursday 3:00–4:00pm; other times possible by appointment. My office is 378 Altgeld.

Textbooks: In the assignment, the two texts are abbreviated as follows:

Problems:

1. In these questions, you will determine whether one vector is a linear combination of two others.
 (a) Section 1.4 of [FIS], Problem 3: parts (a) and (c).
 (b) Section 1.4 of [FIS], Problem 4: parts (a) and (e).

2. In class, I defined the span of a finite list of vectors u_1, u_2, \ldots, u_n. More generally, given a nonempty subset S of a vector space V, one defines span(S) to be the set of all linear combinations of vectors in S. Here are some problems about the span.
 (a) Section 1.4 of [FIS], Problem 5: parts (g) and (h).
 (b) Suppose S_1 and S_2 are subsets of a vector space V. Show that if S_1 is contained in S_2, then span(S_1) is contained in span(S_2).
 (c) Let $V = \mathbb{R}^2$ and $S = \{(x, y) \text{ where } x \geq 0 \text{ and } y \geq x\}$. Find span$(S)$.

3. Solve each of the following linear systems by writing down its augmented matrix, doing row operations to get a matrix in reduced row echelon form, and using that to find all of the solutions. You should label your row operations as in §RREF of [B].
 (a)
 \[
 \begin{align*}
 2x_1 + x_2 &= 0 \\
 x_1 + x_2 &= 1 \\
 3x_1 + 4x_2 &= 5 \\
 3x_1 + 5x_2 &= 7
 \end{align*}
 \]
(b)

\[\begin{align*}
 y_1 + 2y_2 - y_3 &= 1 \\
 y_1 + y_2 + 2y_3 &= 0 \\
 5y_1 + 8y_2 + y_3 &= 1
\end{align*} \]

(c)

\[\begin{align*}
 2x_1 + 4x_2 + 5x_3 + 7x_4 &= 18 \\
 x_1 + 2x_2 + x_3 - x_4 &= 3 \\
 4x_1 + 8x_2 + 7x_3 + 5x_4 &= 24
\end{align*} \]

4. Suppose that \(A, B, \) and \(C, \) are \(m \times n \) matrices with real coefficients. Prove the following three facts from the definition of row equivalence.

(a) \(A \) is row equivalent to \(A. \)

(b) If \(A \) is row equivalent to \(B, \) then \(B \) is row equivalent to \(A. \)

(c) If \(A \) is row equivalent to \(B, \) and \(B \) is row equivalent to \(C, \) then \(A \) is row equivalent to \(C. \)

Note: A relationship that satisfies these three properties is known as an equivalence relation; this is a formal way of saying that a relationship behaves like equality, without requiring the relationship to be as strict as equality itself.

5. Suppose \(A \) is an \(m \times n \) matrix with real entries. The null space of \(A, \) denoted \(\mathcal{N}(A), \) is the set of all solutions in \(\mathbb{R}^n \) to the linear system \(LS(A,0), \) where here \(0 \) is the zero vector in \(\mathbb{R}^m. \) Prove that \(\mathcal{N}(A) \) is a subspace of \(\mathbb{R}^n. \)