
1. Suppose the region E where x2 + y2 ≤ z ≤ 4 and y ≥ 0 is made of material whose

density is given by ρ(x, y, z) = z.

x
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z

E

(a) Fill in the limits and integrand of the integral below so that it computes

the mass of E . (5 points)

∫ 4

0

∫ ∫
dy dx dz

(b) Circle the center of mass of E , whose coordinates have been rounded to one decimal place. Note: This

can be done without evaluating any integrals. (2 points)

(0, 0.7, 1) (0, 0.7, 2) (0, 0.7, 3) (0.7, 0, 1) (0.7, 0, 2) (0.7, 0, 3)
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2. Consider the transformation T : R2 →R2 given by T (u, v) = (
u2 − v2, uv

)
.

(a) Circle the Jacobian of T : (2 points)

∂(x, y)

∂(u, v)
= 2u2 +2v2 2u2 −2v2 4uv 2u +2v

(b) Let S be the square in the (u, v)–plane where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Find the area of its image T (S) in

the (x, y)–plane. (3 points)

Area
(
T (S)

)=
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3. Consider the vector field F(x, y) = 〈
yex , ex + x

〉
. Let R be the half disk below, and let C be the boundary of

R, oriented as shown.

(a) Use Green’s Theorem to compute
∫

C
F ·dr. (4 points)

x

y

(0,−1)

(0,1)

R

C

∫
C

F ·dr =

(b) Let C0 be the round part of C , that is, just the semicircle from (0,1) to (0,−1), not including the y-axis.

Compute
∫

C0

F ·dr. (2 points)

∫
C0

F ·dr =
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4. Let S be the surface parameterized by r(u, v) = 〈
uv, u, v

〉
for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

(a) Mark the box next to the picture of S below. (2 points)

x

y
z
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(b) Find a normal vector v for the tangent plane to S at the point
(1

4 , 1
2 , 1

2

)
. (3 points)

v =
〈

, ,
〉

(c) Fill in the integrand below to give a double integral in u and v that evaluates the surface integralÏ
S

x + z dS. Do not evaluate the resulting integral. (3 points)

∫ 1

0

∫ 1

0
dudv



5. Label the boxes next to the solid regions corresponding to the following two integrals: (2 points each)

(A)
∫ 1

0

∫ 1−z

0

∫ 1−y−z

0
f (x, y, z) dx dy dz (B)

∫ 1

0

∫ 1

z

∫ 1−z

1−y
g (x, y, z) dx dy dz

x

y

z

1

1

1

x

y

z

1

1

1

x

y
z

1

1

1

x

y
z

1

1

x

y

z

1

1

1
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y

z

1

1

6. Consider the solid E = {
x2 + y2 + z2 ≤ 4 and x ≤ 0 and z ≤ 0

}
.

(a) Check the box next to the correct description of E in terms of spherical coordinates: (2 points){
0 ≤ ρ ≤ 2, 0 ≤ θ ≤π, π/2 ≤φ≤π} {

0 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤φ≤π}
{
0 ≤ ρ ≤ 2, 0 ≤ θ ≤π, 0 ≤φ≤π/2

} {
0 ≤ ρ ≤ 2, π/2 ≤ θ ≤ 3π/2, π/2 ≤φ≤π}

{
0 ≤ ρ ≤ 2, π/2 ≤ θ ≤ 3π/2, 0 ≤φ≤π/2

}
(b) Select the correct integrand that fills in the blank of

Ñ
E

z dV =
Ñ

E
dρdθdφ. (2 points)

ρ2 sinφcosφ ρ3 sinφsinθ ρ2 sinφ

ρ cos2θ ρ3 sinφcosφ ρ sinφcosθ



7. (a) Consider the rectangle S in R3 with vertices (0,0,0), (1,1,0), (1,1,2), and (0,0,2). Give a parameterization

of S of the form r(u, v) where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. (2 points)

r(u, v) =
〈

, ,
〉

(b) Let M be the portion of the cone
p

x2 + z2 = y + 1 for 0 ≤ y ≤ 1 as shown at right. Parameterize it by

r : D →R3, being sure to specify the domain D of the parameterization in the (u, v)–plane. (3 points)

x

y

z

M

r(u, v) =
〈

, ,
〉

D =
{ }

(c) The surface integral
Ï

M
z2dS is: negative zero positive (1 point)
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