1. Suppose <i>A</i> , <i>B</i> , and <i>C</i> are three distinct points in \mathbb{R}^3 with $\mathbf{v} = \overrightarrow{AB} = \langle 3, 0, 1 \rangle$ and	and $\mathbf{w} = \overrightarrow{AC} =$: (2, 1,	$0\rangle$.	
(a) Find a normal vector \mathbf{n} to the plane P containing A, B, C . (2 points)				
	$\mathbf{n} = \langle$,	,	\rangle
(b) Find the area of the triangle with vertices <i>A</i> , <i>B</i> , <i>C</i> . (2 points)				
	Area =			
→				
(c) Compute \overrightarrow{CB} . (1 point)				
	$\overrightarrow{CB} = \langle$,	,	\rangle
Scratch Space				
our and op and				

2. For each quadric surface below, find the corresponding equation from the options at right and write the corresponding letter in the box next to the graph. (2 points each)

- (A) $x^2 + y^2 + 4z^2 1 = 0$
- (B) $x^2 + y^2 z^2 1 = 0$
- (C) $4x^2 + 4y^2 + z^2 1 = 0$
- (D) $x^2 y^2 z^2 + 1 = 0$
- 3. For each function, label its graph from among the options below by writing the corresponding letter in the box next to the graph. (2 points each)

$$B) \quad \frac{1}{1 + (x+y)^2}$$

Scratch Space

4. Consider the planes $V = \{x - y + 2z = 2\}$ and $W = \{2x - 2y + 4z = 8\}$ in \mathbb{R}^3 .					
(a) The two planes V and W are parallel. Explain why. (1 point)					
(b) Find a point A on V and a point B on W . Compute the distance between V and W by using a vector projection involving the vector \overrightarrow{AB} . (4 points)					

distance =

5. Let $f(x,y) = \frac{xy}{x^2 + 2y^2}$ for $(x,y) \neq 0$. Does the limit $\lim_{(x,y) \to (0,0)} f(x,y)$ exist? If so, what is its value? Justify your answer. (5 points)

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

Scratch Space

) The fun	ction f is dif	$y(x) = 2 + \sqrt{x^2 + 1}$ at (1,0). Find	the equation f	or the ta	ngent	plane t	o its grapl	h at th	ne point
(1,0,3).	(4 points)								
					7 -			7 [
			Equation:		x+	J	y+	z =	

(b) At the point (0,0), the function f is (circle your answer): (1 point)

continuous differentiable both neither

Scratch Space

7. Let f(x, y) be a function with values and derivatives in the table. Use linear approximation to estimate f(3.1, 5.9). (3 points)

(x, y)	f(x,y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$
(-1,3)	0	4	4
(2,1)	2	-1	3
(2,4)	3	7	7
(3,6)	1	-3	5

 $f(3.1, 5.9) \approx$

8. The contour map of a differentiable function g(x, y) is shown at right, where each level curve is labeled by the corresponding value of g. For each part, circle the best possible answer. (1 **point each**)

- (b) $\frac{\partial g}{\partial x}(2,2)$ is negative zero positive
- (c) $\frac{\partial^2 g}{\partial x^2}$ (2,2) is negative zero positive
- (d) $\frac{\partial^2 g}{\partial y \partial x}$ (2,2) is negative zero positive

9. A gelatinous rectangle has height h = 10m and width w = 20m at time t = 0. Suppose the rectangle is compressed vertically so the height **decreases** at a rate of 2m/s and is expanded horizontally so that the width **increases** at a rate of 1m/s, Assuming it keeps a rectangular shape throughout, let A(t) denote its area at time t. Use the Chain Rule to compute $\frac{dA}{dt}(0)$. **(5 points)**

$$\frac{dA}{dt}(0) = m^2/s$$

Scratch Space