Practice Exam for Math 241

Instructions: Calculators, books, notes, and suchlike aids to gracious living are not permitted. **Show all your work** as credit will not be given for correct answers without proper justification, except for Problems 2 and 6.

Note: Problem 6(b) and the very last part of 6(a) are based on material from Friday's lecture, so you won't be able to do those yet.

- 1. Consider the points A = (0, 0, 2), B = (1, 0, 3), and C = (0, 1, 3) in \mathbb{R}^3 .
 - (a) Compute the vectors $\mathbf{v} = \overrightarrow{AB}$ and $\mathbf{w} = \overrightarrow{AC}$. (2 points)
 - (b) Find a normal vector **n** to the plane *P* containing the points *A*, *B*, *C*. (3 points)
 - (c) Find the area of the triangle spanned by *A*, *B*, *C*. (2 points)
 - (d) Find an equation which describes *P*. If you can't do (b), take $\mathbf{n} = (1, -2, -1)$. (1 point)
 - (e) Consider the line *L* given by the parameterization $\mathbf{r}(t) = (2 + 2t, 3, -1 + 2t)$. Is *L* parallel to the plane *P*? Why or why not? (2 points)
- 2. Match the following functions with their graphs and level set diagrams. Here each level set diagram consists of level sets $\{f(\mathbf{x}) = c_i\}$ drawn for evenly spaced c_i . (9 points)
 - (c) $x^2 v^2$ (b) $\cos \sqrt{x^2 + y^2}$ (a) $1/(1 + x^2 + y^2)$

3. Consider the function $f(x, y) = \frac{y^2}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$. Compute the following limit, if it exists. (5 points)

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

4. Consider the composition of the function $f: \mathbb{R}^2 \to \mathbb{R}$ with $x, y: \mathbb{R}^2 \to \mathbb{R}$, that is

$$h(s,t) = f(x(s,t), y(s,t)$$

Compute $\frac{\partial h}{\partial s}(1,2)$ using the chain rule and the table of values at right. (5 points)

				∂x	ду	∂f	∂f
input	x	\mathcal{Y}	f	∂S	∂S	$\overline{\partial x}$	$\overline{\partial y}$
(0,1)	1	1	4	1	2	7	3
(1,1)	1	2	6	1	1	6	2
(1,2)	0	1	5	2	3	5	1
(2,3)	2	3	4	0	1	4	1

5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + \frac{x}{y}$.

- (a) Compute the partial derivatives f_x , f_y and f_{xy} . (3 points)
- (b) Is f differentiable at (2, 1)? Why or why not? (2 points)
- (c) Give the linear approximation of *f* at the point (2, 1): $f(2 + \Delta x, 1 + \Delta y) \approx$
- (d) Give the equation of the tangent plane to the graph of f at (2, 1, 6). (2 points)
- 6. The picture below shows some level sets of a function $f: \mathbb{R}^2 \to \mathbb{R}$.

(a) At the point **p** shown, determine the sign of each of the below quantities. (1 points each)

$f(\mathbf{p})$:	positive	negative	0
-------------------	----------	----------	---

 $f_x(\mathbf{p})$: positive negative 0

- $f_{\mathcal{Y}}(\mathbf{p})$: positive negative 0
- $f_{\chi\chi}(\mathbf{p})$: positive negative 0
- $D_{\mathbf{v}}f(\mathbf{p})$: positive negative 0
- (b) Draw $\nabla f(\mathbf{p})$ on the picture **(1 points)**.

Extra credit problem: Let $E: \mathbb{R}^2 \to \mathbb{R}$ be given by $E(x, y) = 3x^2 + xy$. Find a $\delta > 0$ so that $|E(\mathbf{h})| < 0.01$ for all $\mathbf{h} = (x, y)$ with $|\mathbf{h}| < \delta$. Carefully justify why the δ you provide is good enough. (3 points)