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a c b a c b
b d a b d a
Figure 3.11 Figure 3.12
a b c a b ¢ a
e e f
d d d d
c b a a b C a
Figure 3.13 Figure 3.14

2. Describe the spaces determined by the labelled complexes in Figures 3.11-3.14.
3. Prove Lemma 3.2.

4. Let S be a set with a partial order relation <. A standard technique in com-
binatorics is to associate with .S the abstract complex § whose vertices are the
elements of S and whose simplices are the finite simply-ordered subsets of S.
Suppose one is given the partial order on {a,, . . . ,a,} generated by the following
relations:

a4, < a; =< a, =< ay; a, = a;=< a,;

a, =< a; =< a; a, =< d,.

Describe a geometric realization of &.

§4. REVIEW OF ABELIAN GROUPS

In this section, we review some results from algebra that we shall be using—
specifically, facts about abelian groups.

We write abelian groups additively. Then O denotes the neutral element,
and —g denotes the additive inverse of g. If r is a positive integer, then ng
denotes the n-fold sum g 4+ - - « + g, and (—n)g denotes n(—g).

We denote the group of integers by Z, the rationals by Q, and the complex
numbers by C,

Homomorphisms

If f: G — H is a homomorphism, the kernel of fis the subgroup f~'(0) of
G, the image of f'is the subgroup f(G) of H, and the cokernel of fis the quotient
group H/f(G). We denote these groups by ker f and im f and cok f, respec-
tively. The map fis a monomorphism if and only if the kernel of fvanishes (i.e.,
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equals the trivial‘group). And fis an epimorphism if and only if the cokernel of
f vanishes; in this case, f induces an isomorphism G/ker f = H.

Free abelian groups

An abelian group G is free if it has a basis—that is, if there is a family
{g}. ., of elements of G such that each g € G can be written uniquely as a
finite sum

g = Enaga’

with n, an integer. Uniqueness implies that each element g, has infinite order;
that is, g, generates an infinite cyclic subgroup of G.

More generally, if each g € G can be written as a finite sum g = 2n,g.,
but not necessarily uniquely, then we say that the family {g.} generates G. In
particular, if the set {g.} is finite, we say that G is finitely generated.

If G is free and has a basis consisting of # elements, say g, . . . ,&,, then it is
easy to see that every basis for G consists of precisely n elements. For the group
G/2G consists of all cosets of the form |

(Zeg:) + 26,

where ¢; = 0 or 1; this fact implies that the group G/2G consists of precisely 2
elements. The number of elements in a basis for G is called the rank of G.

It is true more generally that if G has an infinite basis, any two bases for G
have the same cardinality. We shall not use this fact.

A crucial property of free abelian groups is the following: If G has a basis
lg.}, then any function f from the set {g,} to an abelian group H extends
uniquely to a homomorphism of G into H.

One specific way of constructing free abelian groups is the following: Given
a set S, we define the free abelian group G generated by S to be the set of all
functions ¢ : .S — Z such that ¢(x) # 0 for only finitely many values of x; we
add two such functions by adding their values. Given x € S, there is a charac-
teristic function ¢, for x, defined by setting

0 if y # x,
¢x(y) - {1 if y = x.

The functions {¢, | x € S} form a basis for G, for each function ¢ € G can be
written uniquely as a finite sum

¢ = znx Py

where n_ = ¢(x) and the summation extends over all x for which ¢(x) # 0.
We often abuse notation and identify the element x € S with its characteristic
function ¢_. With this notation, the general element of G can be written uniquely
as a finite “formal linear combination”

¢ = Enaxa
of the elements of the set S.
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If G is an abelian group, an element g of G has finite order if ng = 0 for
some positive integer n. The set of all elements of finite order in G is a subgroup
T of G, called the torsion subgroup. If T vanishes, we say G is torsion-free. A
free abelian group is necessarily torsion-free, but not conversely.

If T consists of only finitely many elements, then the number of elements in
T is called the order of 7. If T has finite order, then each element of T has finite
order; but not conversely.

internal direct sums

Suppose G is an abelian group, and suppose {G,}, . ; is a collection of sub-
groups of G, indexed bijectively by some index set J. Suppose that each gin G
can be written uniquely as a finite sum g = Zg,, where g, € G, for each «.
Then G is said to be the internal direct sum of the groups G,, and we write

G = ®aeJ Ga'

If the collection {G,} is finite, say {G,} = {G,, . ..,G,}, we also write this direct
sum in the form G =G, 0 . . . ©G,.

If each g in G can be written as a finite sum g = Zg,, but not necessarily
uniquely, we say simply that G is the sum of the groups {G,}, and we write
G = ZG,, or, in the finite case, G = G, + . - - + G,. In this situation, we also
say that the groups {G,} generate G.

If G = ZG,, then this sum is direct if and only if the equation 0 = Zg,
implies that g, = O for each «. This in turn occurs if and only if for each fixed

index «,, one has
G,y N ( 2 Ga) = {0}.

a?édo

In particular, if G = G, + G,, then this sum is direct if and only if G, N
G, = {0}

The resemblance to free abelian groups is strong. Indeed, if G is free with
basis {g,}, then G is the direct sum of the subgroups {G,}, where G, is the infi-
nite cyclic group generated by g,. Conversely, if G is a direct sum of infinite
cyclic subgroups, then G is a free abelian group.

If G is the direct sum of subgroups {G,}, and if for each a, one has a homo-
morphism f, of G, into the abelian group H, the homomorphisms {f,} extend
uniquely to a homomorphism of G into H.

Here is a usefu] criterion for showing G is a direct sum:

Lemma 4.1. Let G be an abelian group. If G is the direct sum of the sub-
groups {G,}, then there are homomorphisms

such that =, o j, is the zero homomorphism if a # 8, and the identity homo-
morphism if a = 8.
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Conversely, suppose {G.} is a family of abelian groups, and there are
homomorphisms j, and =, as above. Then j, is @ monomorphism. Furthermore,
if the groups j,(G,) generate G, then G is their direct sum.

Proof. Suppose G = @ G,. We define j; to be the inclusion homomor-
phism. To define 7y, write g = Zg,, where g, € G, for each «; and let w;(g) =
gs- Uniqueness of the representation of g shows =, is a well-defined homo-
morphism.

Consider the converse. Because =, ¢ j, is the identity, j, is injective (and =,
is surjective). If the groups j,(G,) generate G, every element of G can be writ-
ten as a finite sum 2 j,(g,), by hypothesis. To show this representation is
unique, suppose

2 j(8) = 2 j.(82)-
Applying 7, we see that g, = g;. O

Direct products and external direct sums

Let {G,}. . ; be an indexed family of abelian groups. Their direct product
II, . ; G, is the group whose underlying set is the cartesian product of the sets
G,, and whose group operation is component-wise addition. Their external di-
rect sum G is the subgroup of the direct product consisting of all tuples (g,), . ,
such that g, = 0, for all but finitely many values of . (Here 0, is the zero
element of G,.) The group G is sometimes also called the “weak direct product”
of the groups G,.

The relation between internal and external direct sums is described as fol-
lows: Suppose G is the external direct sum of the groups {G,}. Then for each
B, we define 75 : G — G, to be projection onto the Bth factor. And we define
Jg: Gg— G by letting it carry the element g € G, to the tuple (g,), ., where
8. = 0, for all « different from 8, and g; = g. Then w; o j, = 0 for oo # 8, and
7, © j, 15 the identity. It follows that G equals the internal direct sum of the
groups G, = j,(G,), where G, is isomorphic to G,.

Thus the notions of internal and external direct sums are closely related.
The difference is mainly one of notation. For this reason, we customarily use
the notations

G=G®... 868G, and G=60DG,

to denote either internal or external direct sums, relying on the context to make
clear which is meant (if indeed, it is important). With this notation, one can for
instance express the fact that G is free abelian of rank 3 merely by writing
G=70ZdZ.

If G, is a subgroup of G, we say that G, is a direct summand in G if there is
a subgroup G, of G such that G = G, ® G,. In this case, if H, is a subgroup of
G,, for i = 1,2, then the sum H, + H, is direct, and furthermore,

G GG

=
H,®H, H, H,
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In particular, if G = G, ® G,, then G/G, = G,.

Of course, one can have G/G, = G, without its following that G = G, ® G,;
that is, G, may be a subgroup of G without being a direct summand in G. For
instance, the subgroup nZ of the integers is not a direct summand in Z, for that
would mean that

1 =nZ®G,

for some subgroup G, of Z. But then G, is isomorphic to Z/nZ, which is a group
of finite order, while no subgroup of Z has finite order.

Incidentally, we shall denote the group Z/nZ of integers modulo » simply
by Z/n, in accordance with current usage.

The fundamental theorem of
finitely generated abelian groups

There are actually two theorems that are important to us. The first is a
theorem about subgroups of free abelian groups. We state it here, and give a
proof in §11:

Theorem 4.2.  Let F be a free abelian group. If R is a subgroup of F, then
R is also a free abelian group. If F has rank n, then R has rank r < n; further-
more, there is a basis e,, . .. e, for F and integers t,, ... ,t1, with t,> 1 such
that

(1) tiey, ... .1iere0 0y, ... »€, is a basis for R.
@t .|t that is, t, divides t; .1 for all i.

The integers t,, . . . ,t, are uniquely determined by F and R, although the basis
€y, ...,8, I§ not.

An immediate corollary of this theorem is the following:

Theorem 4.3 (The fundamental theorem of finitely generated abelian groups).
Let G be a finitely generated abelian group. Let T be its torsion subgroup.

(a) There is a free abelian subgroup H of G having finite rank 8 such that
G=HO®T |

(b) There are finite cyclic groups T,, ..., T,, where T, has order > 1,
such that t,|t,| . . . |4, and

T=T,®...0T,

(¢) The numbers 8 and t,, . .. ,t,; are uniquely determined by G.

The number g is called the betti number of G; the numbers L, ...,t, are
called the torsion coefficients of G. Note that 8 is the rank of the free abelian
group G/T = H. The rank of the subgroup H and the orders of the subgroups
T; are uniquely determined, but the subgroups themselves are not.




§4. Review of Abelian Groups

Proof. Let S be a finite set of generators {g,} for G; let F be the free abe-
lian group on the set S. The map carrying each g, to itself extends to a homo-
morphism carrying F onto G. Let R be the kernel of this homomorphism. Then
F/R = G. Choose bases for F and R as in Theorem 4.2. Then

F=F®&...9F,
where F; is infinite cyclic with generator e;; and

R=tlF!@' * ‘ethk®Fk+le' . '@F

We compute the quotient group as follows:
FIR=(F\/tF,® .. -®F/t,F)®(F. , & .. .OF,).

Thus there is an isomorphism
16— Z/t®. . - BLI)®EZS...0Z).

The torsion subgroup 7' of G must be mapped to the subgroup Z/t®.. . &

Z /1, by f, since any isomorphism preserves torsion subgroups. Parts (a) and (b)
of the theorem follow. Part (c) is left to the exercises. [J

This theorem shows that any finitely generated abelian group G can be
written as a finite direct sum of cyclic groups; that is,

C=(ZS. - ©Z)OZL/L,®... 0L/,

with ¢, > l and #,]2,| . . .| t,. This representation is in some sense a “canoni-
cal form” for G. There is another such canonical form, derived as follows:
Recall first the fact that if #» and # are relatively prime positive integers,

then
Z/m®Z/n=Z/mn.

It follows that any finite cyclic group can be written as a direct sum of cyclic

groups whose orders are powers of primes. Theorem 4.3 then implies that for
any finitely generated group G,

C=(Z® .- -92)®(Z/a,®...DZ/a,)

where each g; is a power of a prime. This is another canonical form for G, since
the numbers a; are uniquely determined by G (up to a rearrangement), as we
shall see. The numbers q; are called the invariant factors of G.

EXERCISES
1. Show that if G is a finitely generated abelian group, every subgroup of G is
finitely generated. (This result does not hold for non-abelian groups.)

2. (a) Show that if G is free, then G is torsion-free.
(b) Show that if G is finitely generated and torsion-free, then G is free.
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(c) Show that the additive group of rationals Q is torsion-free but not free,
[Hint: 1f {g,} is a basis for Q, let 8 be fixed and express g,/2 in terms of
this basis.]

3. (a) Show that if m and » are relatively prime, then Z/m ® Z/n is cyclic of
order mn.
by IfG=Z/18® Z/36, express G as a direct sum of cyclic groups of prime
power order.
() HG=Z/20Z/40Z/30 Z/3®Z/9, find the torsion coefficients of G.
(d) If G=12Z/15 ©Z/20®©Z/18, find the invariant factors and the torsion
coefficients of G.

4. (a) Let p be prime; let 5,, . . . +b. be non-negative integers. Show that if
G = (Z/p)" @ (Z/p)"® - - - © (Z/p""™,

then the integers b, are uniquely determined by G. [Hint: Consider the
kernel of the homomorphism f,: G — G that is multiplication by p’. Show
that £, and £, determine &,. Proceed similarly.]

(b) Let p,,...,pybe a sequence of distinct primes. Generalize (a) to a finite
direct sum of terms of the form (Z/(p)")"™ where by =0.

(c) Verify (c) of Theorem 4.3. That is, show that the betti number, invariant
factors, and torsion coefficients of a finitely generated abelian group G are
uniquely determined by G.

(d) Show that the numbers ¢, appearing in the conclusion of Theorem 4.2 are
uniquely determined by F and R.

§5. HOMOLOGY GROUPS

Now we are ready to define the homology groups. First we must discuss the no-
tion of “orientation.”

Definition. Let ¢ be a simplex (either geometric or abstract). Define two
orderings of its vertex set to be equivalent if they differ from one another by an
even permutation. If dim ¢ > 0, the orderings of the vertices of ¢ then fall into
two equivalence classes. Each of these classes is called an orientation of 4. (If ¢
is a 0-simplex, then there is only one class and hence only one orientation of c.)
An oriented simplex is a simplex o together with an orientation of o.

If the points v,, . . . ,U, are independent, we shall use the symbol
Up-..0,
to denote the simplex they span, and we shall use the symbol

e, ...,0,]

to denote the oriented simplex consisting of the simplex v, . . . v, and the equiva-
lence class of the particular ordering (v,, . .. yUp).




§t11. The Computability of Homology Groups 53

*§11. THE COMPUTABILITY OF HOMOLOGY GROUPS

We have computed the homology groups of some familiar spaces, such as the
sphere and the torus and the Klein bottle. Now we ask the question whether one
can in fact compute homology groups in general. For finite complexes, the an-
swer is affirmative. In this section, we present an explicit algorithm for carrying
out the computation.

First, we prove a basic theorem giving a “normal form” for homomor-
phisms of finitely generated free abelian groups. The proof is constructive in na-
ture. One corollary is the theorem about subgroups of free abelian groups that
we stated earlier as Theorem 4.2. A second corollary is a theorem concerning
standard bases for free chain complexes. And a third corollary gives our desired
algorithm for computing the homology groups of a finite complex.

First, we need two lemmas with which you might already be familiar.

Lemma 11.1. Let A be a free abelian group of rank n. If B is a subgroup
of A, then B is free abelian of rank r < n.

Proof. We may without loss of generality assume that B is a subgroup of
the n-fold direct product Z” = Z X . . - X Z. We construct a basis for B as
follows:

Let m;: Z" — Z denote projection on the ith coordinate. For each m < n,
let B, be the subgroup of B defined by the equation

B,= BN (Z™" X 0).
That is, B,, consists of all x € B such that x;(x) = 0 for { > m. In particular,
B, = B. Now the homomorphism
T, B, L

carries B, onto a subgroup of Z. If this subgroup is trivial, let x,, = 0; other-
wise, choose x,, € B, so that its image =,(x,) generates this subgroup. We

assert that the non-zero elements of the set {x,, ...,x,} form a basis for B.
First, we show that for each m, the elements x,, . . . ,x,, generate B, . (Then,
in particular, the elements x,, . . . ,x, generate B.) It is trivial that x, generates
B,; indeed if d is the integer m,(x,), then
x, = (d,0,...,0)
and B, consists of all multiples of this element.
Assume that x,,...,x,,_, generate B, _,; let x& B,. Now m,(x) =

kx,(x,) for some integer k. It follows that
7.(x — kx,) =0,
Then
X —kx,=kXx,+ - +k,_X,_,

so that x — kx,, belongs to B

m-— 1

by the induction hypothesis. Hence x,, . . . ,x,, generate B,,.
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Second, we show that for each m, the non-zero elements in the set
{x,,...,x,} are independent. The result is trivial when m = 1. Suppose it true
for m — 1. Then we show that if

A+ -+ AX,, =0,

then it follows that for each i, A\; = 0 whenever x; # 0; independence follows.
Applying the map =,,, we derive the equation

AT m(X,,) = 0.

From this equation, it follows that either A,, = O or x,, = 0. For if A,, # 0, then
7, (x,) = 0, whence the subgroup =,(B,) is trivial and x,, = 0 by definition.
We conclude two things:

A, =0 if x,#0,
A+ s A Xy =0,
The induction hypothesis now applies to show that for i << m,
=0 whenever x, 0. O

For later use, we generalize this result to arbitrary free abelian groups:

Lemma 11.2. If A is a free abelian group, any subgroup B of A is free.

Proof. The proof given for the finite case generalizes, provided we assume
that the basis for 4 is indexed by a well-ordered set J having a largest element.
(And the well-ordering theorem, which is equivalent to the axiom of choice, tells
us this assumption is justified.)

We begin by assuming A4 equals a direct sum of copies of Z; that is, 4 equals
the subgroup of the cartesian product Z’ consisting of all tuples (n,), ., such
that n, = O for all but finitely many o. Then we proceed as before.

Let B be a subgroup of A. Let B, consist of those elements x of B such that
7, (x) = 0 for @ > B. Consider the subgroup n,(B;) of Z; if it is trivial define
x; = 0, otherwise choose x; € B, so m;(X;) generates the subgroup.

We show first that the set {x, | @ < 8} generates B,. This fact is trivial if
8 is the smallest element of J. We prove it in general by transfinite induction.
Given x € B,, we have

g (X) = kwp(xy)

for some integer k. Hence w,(x — kx;) = 0. Consider the set of those indices &
for which =, (x — kx;z) # 0. (If there are none, x = kx,; and we are through.)
All of these indices are less than 3, because x and x; belong to B,;. Furthermore,
this set of indices is finite, so it has a largest element v, which is less than 8. But
this means that x — kx; belongs to B,, whence by the induction hypothesis,
x — kxgcan be written as a linear combination of elements x, with each a =< .

Second, we show that the non-zero elements in the set {x, | @ =< g8} are inde-
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pendent. Again, this fact is trivial if 8 is the smallest element of J. In general,
suppose

NXo, + - v o F ALK, + AgXg =0,
where «; << 8. Applying m;, we see that
Agmg(xg) = 0.
As before, it follows that either A; = 0 or x; = 0. We conclude that
Ag=0 if  x;#0,
and

AX, + oo+ A x =0.

ayTan Ay
The induction hypothesis now implies that A, = 0 whenever x, # 0. [J

We now prove our basic theorem. First we need a definition.

Definition. Let G and G' be free abelian groups with bases a,, ... ,a, and
a,, . ..,a,, respectively. If f: G — G’ is a homomorphism, then

fl@) = Maf
i=1
for unique integers A;. The matrix (\;) is called the matrix of f relative to the
given bases for G and G'.

Theorem 11.3. Let G and G' be free abelian groups of ranks n and m, re-
spectively; let f : G — G' be a homomorphism. Then there are bases for G and
G' such that, relative to these bases, the matrix of f has the form

b, 0
. | 0
0 0
where b; =1 and b, | b,| - . - 15,

This matrix is in fact uniquely determined by f (although the bases involved
are not). It is called a normal form for the matrix of f.

Proof. We begin by choosing bases in G and ' arbitrarily. Let 4 be the
matrix of frelative to these bases. We shall give shortly a procedure for modify-
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ing these bases so as to bring the matrix into the normal form described. It is
called “the reduction algorithm.” The theorem follows. [

Consider the following “elementary row operations” on an integer matrix A4:

(1) Exchange row i and row k.
(2) Multiply row i by —1.
(3) Replace row i by (row i) + g(row k), where g is an integer and k # i.

Each of these operations corresponds to a change of basis in G'. The first
corresponds to an exchange of a} and ;. The second corresponds to replacing
a/by —a). And the third -corresponds to replacing a; by a;, — ga;, as you can
readily check.

There are three similar “column operations” on A that correspond to changes
of basis in G.

We now show how to apply these six operations to an arbitrary matrix 4 so
as to reduce it to our desired normal form. We assume A is not the zero matrix,
since in that case the result is trivial.

Before we begin, we note the following fact: If ¢ is an integer that divides
each entry of the matrix A, and if B is obtained from A by applying any one of
these elementary operations, then c¢ also divides each entry of B.

The reduction algorithm

Given a matrix 4 = (a;) of integers, not all zero, let a(A4) denote the small-
est non-zero element of the set of numbers |a;;|. We call a;; a minimal entry of 4
if |ay| = a(A).

The reduction procedure consists of two steps. The first brings the matrix
to a form where a(A4) is as small as possible. The second reduces the dimensions
of the matrix involved.

Step 1. We seek to modify the matrix by elementary operations so as to
decrease the value of the function a. We prove the following:

If the number o(A) fails to divide some entry of A, then it is possible to de-
crease the value of o by applying elementary operations to A; and conversely.

The converse is easy. If the number a(4) divides each entry of 4, then it
will divide each entry of any matrix B obtained by applying elementary op-
erations to A. In this situation, it is not possible to reduce the value of o by
applying elementary operations.

To prove the result itself, we suppose a;; is a minimal entry of A that fails
to divide some entry of A. If the entry a;; fails to divide some entry a,; in its
column, then we perform a division, writing

aij alj
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where 0 < |r] < |a,|. Signs do not matter here; ¢ and r may be either positive
or negative. We then replace (row k) of A by (row k) — g(row i). The result is
to replace the entry a,; in the kth row and jth column of A by a,; — ga; = r.
The value of « for this new matrix is at most ||, which is less than a(A4).

A similar argument applies if a;; fails to divide some entry in its row.

Finally, suppose a; divides each entry in its row and each entry in its col-
umn, but fails to divide the entry a,,, where s # i and ¢ # j. Consider the fol-
lowing four entries of A:

a;- - -a;

Qg+ + - Ay
Because a;; divides a;, we can by elementary operations bring the matrix to the

form where the entries in these four places are as follows:

aij R L7

0 .. 'ast+lait

If we then replace (row i) of this matrix by (row i) + (row s), we are back in
the previous situation, where g;; fails to divide some entry in its row.

Step 2. At the beginning of this step, we have a matrix 4 whose minimal
entry divides every entry of A4. '

Apply elementary operations to bring a minimal entry of A4 to the upper left
corner of the matrix and to make it positive. Because it divides all entries in its
row and column, we can apply elementary operations to make all the other en-
tries in its row and column into zeros. Note that at the end of this process, the
entry in the upper left corner divides all entries of the matrix.

One now begins Step 1 again, applying it to the smaller matrix obtained by
ignoring the first row and first column of our matrix.

Step 3. The algorithm terminates either when the smaller matrix is the
zero matrix or when it disappears. At this point our matrix is in normal form.
The only question is whether the diagonal entries b,, . . . , b, successively divide
one another. But this is immediate. We just noted that at the end of the first
application of Step 2, the entry b, in the upper left corner divides all entries
of the matrix. This fact remains true as we continue to apply elementary op-
erations. In particular, when the algorithm terminates, b, must divide each of
b,,....b,.

A similar argument shows b, divides each of b, ...,b,. And so on.

It now follows immediately from Exercise 4 of §4 that the numbers
b,,...,b,are uniquely determined by the homomorphism f. For the number / of
non-zero entries in the matrix is just the rank of the free abelian group f(G) C
G'. And those numbers b, that are greater than 1 are just the torsion coeffi-
cients t,, . .. ,t, of the quotient group G'/f(G).
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Applications of the reduction algorithm

Now we prove the basic theorem concerning subgroups of free abelian
groups, which we stated in §4.

Proof of Theorem 4.2. Given a free abelian group F of rank n, we know
from Lemma 11.1 that any subgroup R is free of rank r < n. Consider the
inclusion homomorphism j: R — F, and choose bases a,,...,a, for R and
e, ...,e, for F relative to which the matrix of j is in the normal form of the
preceding theorem. Because j is a monomorphism, this normal form has no zero
columns. Thus j(a;) = b,e; fori = 1,...,r, where b,= 1 and b,| b,] - - - | b,.
Since j(a;) = a;, it follows that b,e,, ... ,b,e, is a basis for R. O

Now we prove the “standard basis theorem” for free chain complexes.

Definition. A chain complex @ is a sequence

d d

p+1 r,
.—)Cp+1 ,Cp Cp_l—)...

of abelian groups C; and homomorphisms §;, indexed with the integers, such
that 4,0 d,,, = 0 for all p. The pth homology group of € is defined by the
equation

H,(€) = kerd,/imd, ,,.

If H,(€) is finitely generated, its betti number and torsion coefficients are called
the betti number and torsion coefficients of € in dimension p.

Theorem 11.4 (Standard bases for free chain complexes). Let {Cp, 3,,} be a

chain complex; suppose each group C, is free of finite rank. Then for each p
there are subgroups U,, V,, W, of C, such that

C,=UeV,ew,

where 6,(U,) C W,_, and 3,(V,} = 0 and 8,(W,) = 0. Furthermore, there
are bases for U, and W, _ , relative to which d,: U,— W, _, has a matrix of
the form

where b, =1 and b, | b,| - -|b,.

Proof. Stepl. Let

Z,=kerd, and B,=imad,,,.

Let W, consist of all elements ¢, of C, such that some non-zero multiple of ¢,
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belongs to B,. It is a subgroup of C,, and is called the group of weak boundaries.
Clearly

B,cw,CcZ,CC,

(The second inclusion uses the fact that C, is torsion-free, so that the equation
mc, = 0, , (d, ,  implies that d,c, = 0.) We show that W, is a direct summand
in Z,.

Consider the natural projection

Z,— H,(€) — H,(€)/T,(@),

where 7,(®) is the torsion subgroup of H,(@). The kernel of this projection
is W,; therefore, Z,/W, = H,/T,. The latter group is finitely generated
and torsion-free, so it is free. If ¢, + Wy ...sc+ W, is a basis for Z,/W,
and d,,...,d; is a basis for W,, then it is straightforward to check that
Cir++ +5Ciabyy . . . ,d;is a basis for Z,. Then Z, = V, @ W,, where V, is the group
with basis ¢, ...,c,.

Step 2. Suppose we choose bases e,,...,e, for C,, and e, ... e, for
C, - 1, relative to which the matrix of d,: C, — C, _ has the normal form

e, - - -€ €.y,
e, .bl 0
. . 0
e |0 b,
€+ 1
0 0
en | ]
where b, > 1 and b, b,| - - - | b,. Then the following hold:
(1) €415 --,e,is a basis for Z,.

(2) e, ...,e/is a basis for W, _,.
(3) biey, ... ,be s a basis for B, _,.
We prove these results as follows: Let ¢, be the general p-chain. We com-

pute its boundary; if
{

n
’
CP = Z a,-e,', thcn 6pcp S Z aibiei'

i=1 i=1

To prove (1), we note that since b, # 0, the p-chain ¢, is a cycle if and only if
a;=0fori=1,...,I To prove (3), we note that any p — 1 boundary 4,c, lies
in the group generated by b,e}, . . . ,be;; since b, # 0, these elements are inde-
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pendent. Finally, we prove (2). Note first that each of e, ...,e belongs to
/4 since b;e = de;. Conversely, let

p— I
m
[
Cp-—l= Zdiei
i=1

be a p — 1 chain and suppose ¢, ., € W, _ ;. Then ¢, _, satisfies an equation of
the form

I

Ae,_=d,c,= Z a;be]

i=1

for some A # 0. Equating coefficients, we see that Ad, = 0 for i > /, whence

d;=0fori> [l Thuse,...,eis a basis for W, _,.
Step 3. We prove the theorem. Choose bases for C, and C, _ , as in Step 2.
Define U, to be the group spanned by e,, ... ,e; then
C,=U,02Z,

Using Step 1, choose V, so that Z, = V,©® W,. Then we have a decomposition
of C, such that 4,(¥,) = 0 and 9,(W,) = 0. The existence of the desired bases
for U, and W, _, follows from Step 2. O

Note that W, and Z, = V,® W, are uniquely determined subgroups of C,.
The subgroups U, and V, are not uniquely determined, however.

Theorem 11.5. The homology groups of a finite complex K are effectively
computable.

Proof. By the preceding theorem, there is a decomposition
CK)y=Uev,oew,

where Z, = V,® W, is the group of p-cycies and W, is the group of weak
p-boundaries. Now

H,(K) = Z,/B, =V, ® (W,/B,) = (Z,/W,) ® (W,/B,).

The group Z,/W, is free and the group W,/B, is a torsion group; computing
H,(K) thus reduces to computing these two groups.

Let us choose bases for the chain groups C,(K) by orienting the simplices
of K, once and for all. Then consider the matrix of the boundary homomor-
phism 8, : C,(K) — C, _ ;(K) relative to this choice of bases; the entries of this
matrix will in fact have values in the set {0,1,—1}. Using the reduction algo-
rithm described earlier, we reduce this matrix to normal form. Examining Step
2 of the preceding proof, we conclude from the results proved there the follow-
ing facts about this normal form:
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(1) The rank of Z, equals the number of zero columns.
(2) The rank of W, _, equals the number of non-zero rows.

(3) There is an isomorphism

W,_ /B, ., =Z[b®L/b,® - . ©L[b,

Thus the normal form for the matrix of §,: C, — C, _, gives us the torsion
coefficients of K in dimension p — 1; they are the entries of the matrix that are
greater than 1. This normal form also gives us the rank of Z,. On the other
hand, the normal form for 4, . ,:C,, , — C, gives us the rank of W,. The dif-
ference of these numbers is the rank of Z,/W,—that is, the betti number of K
in dimension p. [l

EXERCISES

1. Show that the reduction algorithm is not needed if one wishes merely to com-
pute the betti numbers of a finite complex K instead all that is needed is an
algorithm for determining the rank of a matrix. Specifically, show that if 4, is
the matrix of 9, : C,(K) — C, . ,(K) relative to some choice of basis, then

B,(K) = rank C,(K) — rank 4, — rank A,
2. Compute the homology groups of the quotient space indicated in Figure 11.1.
[Hint: First check whether all the vertices are identified.]

3. Reduce to normal form the matrix

2 6 4
4 -7 4].
4 &8 4

Figure 11.1
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